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9.0 STOCHASTIC FORECASTING OF TEMPERATURE AND THE THORNTHWAITE MOISTURE INDEX  

9.1 Introduction 

This document presents the calculation procedure for the time series decomposition and 
forecasting for the stochastic climate model.  A computer program was developed using MATLAB 
to perform the calculation due to the multiple algorithmic processes required.  The script file, with 
accompanying notes, is available and will be included in the final report. 
 
The stochastic model builds upon the deterministic climate model approach presented previously 
in QPR5 in March 2020, and recently published by the group in the Soil and Rocks International 
Journal of Geotechnical and Geoenvironmental Engineering under the title “An improved 
framework for volume change of shrink/swell soils subjected to time-varying climatic effects” 
(Olaiz et al., 2021). The full publication is attached to this report. The Thornthwaite Moisture 
Index (Witczak et al. 2006) is used to quantity the climate for both, the deterministic and stochastic 
models.  
 
Similar to the deterministic model, data from an AASHTO Long-Term Pavement Performance 
(LTPP) Seasonal Monitoring Program (SMP) section (TX 48-1068) approximately 80 miles 
northwest of Dallas, Texas (FHWA, 1995) is used to provide a real example of the calculation 
process.  
 
The fundamental concepts of the stochastic climate model are based upon a modern time series 
concept, Bayesian inference, and a Markov Chain Monte Carlo (MCMC) iterative process. The 
initial time series analysis allows us to decompose the monthly TMI data into long-term/seasonal 
trends and unpredicted deviations from those trends, referred to as noise (Montgomery et al. 2016). 
Bayesian inference provides a reliable probabilistic approach that allows convergence to a targeted 
mean via several iterations of random samples drawn from the parameter space (Gelman et al. 
2013). Most importantly, the MCMC technique allows for the random generation and estimation 
of data (Monte Carlo portion) which is dependent on the previously estimated value (Markov 
Chain portion). More specifically, the stochastic model proposed herein, utilizes a second-order 
moving average (MA(2)) of the monthly change in TMI (difference between the values of two 
consecutive months) to fit the historic data, and a permutation of the Adaptive Metropolis-Hastings 
(MH) algorithm (Metropolis et al., 1953; Hasting, 1970; Harrio et al., 2006) to forecast the 
expected TMI and its uncertainty. The proposed method utilizes the vast amount of stochastic 
time-series research used in the fields of climate change forecasting and stock market research.  
 
The stochastic portion of the climate model including the MCMC simulation will be presented in 
a separate document due to its robust procedure. Although the stochastic portion of the new climate 
model  
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9.2 Deterministic Climate Model 

Prior to initiating the stochastic climate model, the deterministic result must first be calculated. 
The deterministic process used for the calibration of the shrink/swell volume-change calculation 
incorporates the estimation of climate-induced time-varying suction changes at the surface 
boundary condition of the soil profile.  
 
Within the procedure for calculating the time-varying volume change of shrink/swell soils, Olaiz 
et al. (2021) presented the following steps for the estimation of the site-specific time-varying 
surface suction: 

1. Weather station identification and data extraction  

2. Calculation of 30-year and monthly Thornthwaite Moisture Index per Witczak et al. 

(2006) 

3. Determination of suction envelope parameters per Vann and Houston (2021) which 

includes the limits of suction variation at the surface 

4. Initial estimation of monthly changes in suction at the surface as per Perera (2003) 

5. Adjustment to the estimation of monthly changes in suction using limits of suction 

variation at the surface from Vann and Houston (2021) 

Note that steps 3 and 5 use parameters that are based on the 30-year TMI value. Due to the nature 
of the proposed stochastic climate model, the 30-year TMI will change as each simulation 
randomly generates certain parameters. Therefore, steps 3 through 5 above will be performed 
following the generation of the stochastically forecasted TMI values. This report only presents the 
stochastic procedure for forecasting the time varying TMI. Steps 1 and 2 were extracted from Olaiz 
et. al (2021) and are presented herein as Steps 1.1 and 1.2. 
 
The time series analysis continues from Step 1. A typical time series analysis adheres to the 
following process: 

1. Problem understanding and data collection  
2. Data analysis 
3. Model selection and fitting 
4. Model validation 
5. Forecasting 
6. Monitoring forecast performance 
7. Updating forecast with new data 

 
This report will discuss Steps 2 through 4. The forecast model, performance monitoring, and model 
updates will be discussed separately as these steps require a robust and adaptive feature to the 
proposed stochastic model.  
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Step 9.2.1: Weather Station Identification  

An SMP pavement section approximately 80 miles northwest of Dallas, Texas (TX 48-1068) is 
used to provide an example for the proposed framework. For the purposes of this example 
calculation, the climate data was gathered from the weather station nearest to the site and identified 
using the open-access Thornthwaite Moisture Index (TMI) GIS map developed by Olaiz et al. 
(2017), which uses the National Oceanic and Atmospheric Administration’s (NOAA) 30-year 
climate database for the United States. Figure 9-1 below presents an excerpt for the GIS map, 
which has the Paris, TX weather station selected. 
 

 
Figure 9-1: Paris, TX weather station (NOAA ID USC00416794) data from online 

TMI GIS map (Olaiz et al., 2017) 
 
The “Station ID” shown in the pop-up window in Figure 9-1 (USC00416794) is the only data 
needed as an input in the software product of this study.  However, the remaining data shown may 
be helpful to get an understanding of the general climatic conditions at the site.  
 
The NOAA climate data associated with each station in the country can be extracted from the 
online NOAA FTP site. It is recommended that the extracted weather data be filtered to contain 
the following variables, needed in the computation of the Thornthwaite Moisture Index (Witczak 
et al., 2006): 

• Year 
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• Month 

• Monthly Precipitation (cm) 

• Monthly Average Temperature (Celsius) 

Note that the Vann and Houston (2021) models used in the proposed analysis correlate the suction 
envelope parameters to a 30-year TMI value. As such, the climate data from the NOAA database 
for station USC00416794 was extracted for the date range of 9/1967 to 9/1997 (the last date of 
measured data from the SMP study for the TX 48-1068 section).  

Step 9.2.2: Monthly and 30-year Thornthwaite Moisture Index (Witczak et al., 2006) 

To determine a yearly TMI on a monthly basis, the potential evapotranspiration (PET) for each 
month must be calculated: 
 

 1 2
10( ) 1.6

atPET cm f f
I

 =  
 

 (9-1) 

 
Where, f1 is the fraction of the number of days in month divided by the average number of days in 
month, 30; f2 is the fraction of the number of hours in a day divided by the base of 12 hours in a 
day; t is the mean monthly temperature in degrees Celsius; I is the annual heat index; and a is a 
coefficient. 
 

 
1.51412

1 5
i

i

tI
=

 =  
 

∑  (9-2) 

 
where, ti is the mean temperature for the ith month, and  

 
 ( ) ( ) ( )-7 3 -5 2

y y y6.75×10 H -7.71×10 H +0.017921 H +0.49239 a =  (9-3) 

 
The TMI (Witczak et al., 2006) can now be determined by: 
 

 75 1 10PTMI
PET

 = − + 
 

 (9-4) 

 
where, P is the precipitation for the given month. 
 
To visualize the climate data over time, the monthly average temperature, the monthly rainfall, 
and the calculated TMI are plotted in Figure 9-2.  For the example calculation at the TX 48-1068 
SMP section, the 30-year weather data must be analyzed (9/1967 to 9/1997).  
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Figure 9-2: Monthly average temperature and rainfall data for NOAA weather station 
USC00416794 with the calculated yearly TMI (Witczak et al, 2006) between 9/1967 and 

9/1997 
 
The 30-year TMI value (Witczak at al., 2006) calculated from the NOAA data set for the 
USC00416794 station is +29.6.  This value does differ slightly from the +21.7 value previously 
shown on the TMI GIS map for illustration purpose (Figure 9-1) due to the difference in date 
ranges used in the Olaiz et al. (2017) study. 

9.3 Time Series Decomposition 

The initial time series analysis gathered from the deterministic model must be decomposed into 
long-term/seasonal trends and the monthly deviations from those trends, referred to as noise 
(Montgomery et al. 2016). The time series decomposition includes stationarity tests, 
autocorrelation tests, determination of lag, and normality tests of the residual values to determine 
the most efficient model to fit the data. The stochastic model proposed herein utilizes a second-
order moving average (MA(2)) of the monthly change in TMI (difference) to fit the historic data. 
 

Step 9.3.1: Stationarity, Transformations, and Autocorrelation, 

The first step of time series decomposition is to vary the stationarity of the data. Stationarity 
implies that the time series data moves around a relatively stable equilibrium or mean value. On 
the extreme side, strict stationarity indicates that the joint probability distribution at any time range 
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within the series is equivalent to a different time range within the series. General stationarity can 
be judged visually using a time series plot. The stationarity can also be judged mathematically 
using an autocorrelation approach. It is common to study both, the raw time series data as well as 
the smoothed/transformed time series data when determining stationarity, autocorrelation, and lag 
(time period associated with autocorrelated data).  

Step 9.3.2: Transformations 

Time series data is often transformed or adjusted to remove seasonal/long-term trends and to obtain 
a more stationary data set. A common form of transformation, used in the proposed forecasting 
model is differencing. Differencing is simply calculating the change between time steps, which 
can be represented using TMI as follows: 
 
 1t t tTMI TMI TMI −∆ = −  (9-5) 
 
A second common transformation technique is to smooth the data using a moving average ( TM ). 
The moving average represents the mean of the time series of a specified span ( N ). The moving 
average of the TMI at time period (T ) is represented as: 
 

 1 1

1

... 1 T
T T T N

T t
t T N

TMI TMI TMIM TMI
N N
− − +

= − +

+ +
= = ∑  (9-6) 

 
The span of the moving average which provides the best fit to the data represents the lag term. The 
lag can be determined from a study of the autocorrelation functions.  

Step 9.3.3: Autocorrelation  

The covariance between the TMI at a given time ( t ) and the TMI a different time ( t k+ ) is the 
autocovariance at lag ( k ), expressed as: 
 
 ( ) ( )( ),k t t k t t kCov TMI TMI E TMI TMIγ µ µ+ += = − −    (9-7) 

Where E represents the expected value of the expression. The autocovariance at zero lag ( 0k = ) 
represents the variance of the time series: 0( )tVar TMI γ= . The autocorrelation coefficients ( kρ ) 
at any lag are expressed as: 
 

 ( )
( ) 0

,t t k k
k

t

Cov TMI TMI
Var TMI

γρ
γ

+= =  (9-8) 

 
The autocorrelation functions ( kr ) are then calculated by: 
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0

k
k

cr
c

=  (9-9) 

 
Where: 
 

 ( )( )
1

1 T k

k t t k
t

c TMI TMI TMI TMI
T

−

+
=

= − −∑  (9-10) 

 
And ( )0 0kc c k= = , with TMI  representing the mean of the TMI time series data.  

 
The autocorrelation functions (ACFs) of the TMI and change in TMI (dTMI) data for the example 
TX 48-1068 SMP section from 3/1967 to 9/1997 are presented below.  
 

 
Figure 9-3: ACFs of TMI (Witczak et al., 2006) and dTMI for the 

 TX 48-1068 SMP section from 3/1967 to 9/1997 
 
Stationarity and lag can be visually interpreted from the ACF plot. Time series data, which exhibit 
stationary behavior, will have ACFs that decrease initially from 1 to approximately zero, and then 
will oscillate around zero, as both TMI and dTMI show, with minimal spikes above a specified 



9-11 
 

significance level (not shown above). The lag for both TMI and dTMI were determined by 
selecting where the ACFs just passed the zero value (TMI lag = 12, dTMI lag = 3). Note that the 
developed ACF values and plots were validated by the authors using the commercial statistical 
software Minitab.  

Step 9.3.4: Data Analysis via Decomposition 

Once stationarity of the time series data has been verified and the lag has been determined, the 
proper data transformation can be completed. Although there are several sophisticated time series 
data transformations (Montgomery et al., 2016), the TMI data has an inherent lag of 12 months 
due to its annual heat index, which allows a 12-span moving average to provide a reasonably good 
fit for most occasions. This phenomenon is evident in the previously presented ACF plot.  
 
Generally, a time series ( ty ) can be decomposed into a trend ( tT ) component, a seasonal 

component ( tS ), and a random error (noise) component ( tε ).  
 
 t t t ty T S ε= + +  (9-11) 
 
A multiplicative model for time series decomposition is also frequently used although not 
presented herein. Due to the inherent yearly average of the heat index within the TMI calculation, 
the trend and seasonal component can be modeled together using a moving average of lag = 12 
months ( 12kM = ). Therefore, the random noise for a given month of TMI ( tε ) data is expressed as: 
 
 12 12t t k t ky MA TMI MAε = == − = −  (9-12) 
 
The figure below presents the time series decomposition of the TMI with lag = 12 months and 
dTMI with lag = 3 months. It is evident from the decomposition plots, that the differenced TMI 
data (change in TMI) has a better fit and lower magnitude in residual values than the raw TMI 
data. This provides enough evidence to choose a second order moving average (MA(2)) model 
(typically used when ACF has a lag = 3) of the change in (differenced) TMI.  
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Figure 9-4: Time series decomposition of TMI and dTMI (black) showing moving average 
(MA in red) with lag = 12 and 3, respectively, and the associated monthly residuals (blue).  

Step 9.3.5: Model Fit 

The second order moving average (MA(2)) model of the differenced TMI (dTMI) is expressed as: 
 
 1 1 2 2t TMI t t tdTMI µ ε θ ε θ ε− −= + − −  (9-13) 
 
Where dTMIµ is the average value of the sampled dTMI and represents the ACF parameters for 
dTMI at the lag identified by the subscripts. To improve the fit, the average value of the sample 
can be replaced by the moving average of the terms prior with lag = 3, as presented in the figure 
below. Note that once the dTMI value is estimated, the TMI term for a given month is calculated 
adding the change to the previous term, as expressed by:  
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 1t t tTMI TMI dTMI−= +  (9-14) 

 
Figure 9-5: Known (posterior) data vs. model fit (forecasted) for TMI (top), dTMI 

(middle), and TMI moving average (MA) (bottom) 
 
The dTMI model expressed in Eq. 13 will serve as the basis for the stochastic forecasting solution. 
However, the stochastic approach will incorporate the monthly statistics associated with each of 
the parameters in the equation (i.e., monthly means of dTMI, and autocorrelated monthly residual 
values).  

Step 9.3.6: Model Validation 

Validation of a good model fit of time series data is typically completed by studying the normality 
of the residuals, or noise. The figure below presents the histograms of the monthly TMI and dTMI 
residuals and the standardized residuals of each. Also presented on the histograms are normal 
probability density functions that were fit to the histogram data.  
 
From the histogram plots, it is apparent that residuals of both moving average trends for TMI and 
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dTMI can be considered to follow a normal distribution. Typically, normality plots are developed 
to visually analyze the distribution of data. The author’s generated normality plots using Minitab 
to validate the obvious interpretation of normality of the data from the histograms, although they 
are not provided in this report. 
 

 
Figure 9-6: Histograms of monthly TMI vs. the MA (lag = 12) (top left), monthly dTMI vs. 
the MA (lag = 3) (top right), standardized monthly TMI vs. the MA (lag = 12) (bottom left), 

and standardized monthly dTMI vs. the MA (lag = 3) (bottom right).   
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9.4 Review of Bayesian Forecasting Techniques 

Bayesian frameworks are a recent focus of study and implementation in geotechnical 
engineering (Zhang et al., 2004; Najjar and Gilbert, 2009; Ching et al., 2010; Chiu et al., 2012; 
Juang et al., 2013; Medina-Cetina and Esmailzadeh, 2014; Wang et al., 2016). However, the 
mathematical and computational complexity have limited the speed of adoption by the overall field 
(e.g., Zhang et al., 2009).  

 
Prior knowledge and site/project specific data are used during geotechnical site characterization to 
estimate subsurface properties. The prior knowledge, or prior distribution, represents the 
estimation of the PDFs for the model parameters based on historical data/experience of similar 
parameters (e.g., the expansion potential of a fat clay at a new site is likely to be similar to other 
fat clays in the area or even around the world). The likelihood function is a key step in the Bayesian 
framework. The likelihood function is the PDF of site observation data for a given set of model 
parameters.  
 
Bayesian framework are already being studied and implemented in in geotechnical engineering 
(Najjar and Gilbert, 2009; Ching et al., 2010; Chiu et al., 2012; Juang et al., 2013; Medina-Cetina 
& Esmailzadeh, 2014; Wang et al., 2016, Soltanpour, 2017). However, the mathematical and 
computational complexity have limited the speed of adoption by the overall field (e.g., Zhang et 
al., 2009).  
 
It has been common practice to force normal distributions on prior and likelihood functions for the 
sole reason of convenience and simplicity. Although many geotechnical model parameters can 
pass a normality test, many will night and being able to represent the true variability of the model 
parameters (i.e. reflect the physical characteristics of the parameter) can have a significant effect 
of the model outcome.  

9.5 Markov Chain Monte Carlo (MCMC) Simulations 

One powerful tool in stochastic analyses and Bayesian Inference is the Markov-Chain 
Monte Carlo (MCMC) simulation, which can produce forecast estimates of highly correlated, 
multi-parameter, time-series data. MCMC forecasts data based on the conditional probability of 
observed (prior) data. Several recent publications which applied MCMC techniques to analysis of 
time series data and/or analysis of engineering related problems were reviewed as part of this 
study: Valdivieso (2009), Chen and Liu (2011), Sengupta et al. (2016), Bentancourt (2018), Koch 
et al. (2020), and Li et al. (2021). 

 
A series of data is referred to as a Markov Chain is the conditional distribution of each time 

step is dependent or correlated to the previous time step. The general MCMC analysis approach 
involves a drawing proposal values unobserved data ( tθ ) which is dependent upon or corrected 
by the previous draws ( 1tθ − ) so that a better representation of the target distribution is produced. 
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Markov Chains can be represented by the joint distributions of the given/observed data, referred 
to as the marginal distribution. Transition probabilities, or jumping distributions express the joint 
probability of the proposed variable at the current time step ( *θ ) and the accepted variable at the 
previous time step ( 1tθ − ): 

 
 ( ) ( )* 1| |t b a t tJ Jθ θ θ θ −≡  (9-13) 

 
Two common approaches are used in Bayesian inference to produce proposal variables and define 
criteria for acceptance and rejection of the proposed variables. One main goal of MCMC 
simulations is to create stationary Markov processes which results in the proposed variables falling 
within the distributions of the prior data for each sequential draw.  The variance of a Markov Chain 
differs from the typical Monte Carlo simulation, or the good old-fashioned Monte Carlo (GOFMC) 
as defined by Geyer ().  Due to the dependency on the previous data, the variance ( 2σ ) of a MCMC 
simulation, let’s say ( )g X , can be expressed as:  

 

 ( ){ } ( ) ( ){ }2

1
var 2 cov ,i i i k

k
g X g X g Xσ

∞

+
=

= + ∑  (9-14) 

Where, i refers to the previous time current time step and k refers to either the previous or the 
future time steps (if the MCMC chain is reversible). Markov chains are not limited to 
representation of one variable at a time, but the general framework can apply to vectors and array 
variables as well. Furthermore, MCMC frameworks do not need to have stationary transition 
distributions; the variance and/or jumping distributions can be adaptive over time (Rosenthal, 
2010).  

9.5.1 Time-Series MCMC 

Transitional probabilities for MCMC can also be defined by the autocovariance function, which is 
a common explanatory technique for time series analysis.  The covariance function at any lag (k) 
can be expressed as: 

 ( ) ( ){ } ( ) ( )
1

1 ˆ ˆcov ,
n k

k i i k i n i k n
i

g X g X g X g X
n

γ µ µ
−

+ +
=

= = − −   ∑      (9-15) 

Where n represent the total number of observations, ˆnµ  is the mean of the Markov Chain for an 
assumed normally distributed prior data set: 

 
2

ˆ Normal ,n n
σµ µ

 
≈  

 
 (9-16) 

1 Metropolis-Hastings  

The key to performance of an MCMC simulation is the proposal mechanism and the 
acceptance/rejection process for the proposed sample.  A common method to the 
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acceptance/rejection process is the Metropolis-Hasting (MH) approach.  The MH techniques can 
be and are commonly combined with Gibbs sampling techniques to improve efficiency, usefulness, 
and computation time of the MCMC simulation. Originally, the Metropolis algorithm was as 
follows: 

• Propose an unobserved data point ( *θ ) given the conditional probability between either 

the prior or the accepted posterior distributions.  

( ) ( )* 1| | tp y or pθ θ θ −  

• Calculate the Hastings Ratio: 

 ( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

* * 1
1 *

1 1 *

||
| |

| |

t
t

t t

p pp p y
r y r

p y p y p p

θ θ θθ θ
θ θ θ

θ θ θ θ

−
−

− −
≡ = ≡  (9-17) 

• Accept the proposed move to the variable ( *θ ) if the ( )( )1 *min 1 |, tr uθ θ− > .  

The Metropolis-Hasting algorithm provided an update to the rejection aspect of the process and 
included the generation of a uniform random variable (u) between [0,1] following the calculation 
of the Hasting ratio. 

9.5.2 Variance Estimation 

The approach to represent the variance in MCMC simulations is a key factor which affects the 
performance of the model and can be represented/estimated in several ways.  A batch sampling 
approach can be used which simply accounts for a finite number of samples, less than the total 
amount of samples, and assumes stationarity within the batch sample. Similar to a moving average 
approach, the variance within the batch sample is calculated and assumed to represent the posterior 
data at that time step. Batch sampling can include overlapping or not overlapping ranges of the 
sample data.  
 
A second approach for defining the variance of time series data for MCM simulations is referred 
as the Initial Sequence Method and uses the autocorrelation function to represent dependency of 
the next time step on not only the typical lag data points, but also the period after the typical lag 
effect is negligible, and the period as the autocorrelation reverses to be opposite trend of the initial 
relationship.  

9.5.3 Initiating a MCMC Simulation  

One unfortunate aspect of MCMC models is that most useful models are developed and optimized 
to provide insight for a specific scenario and the application of each MCMC framework to other 
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applications is difficult.  
 
Generally, a “Burn-in” or “warm-up” period is implemented into a MCMC model to allow for the 
posterior distributions to stabilize at or near the target distributions. Common practice when 
developing MCMC models is to start with a warm-up period that is 50% of the total number of 
simulations (Gelman et al., 2014).  
 
This initial starting proposal point of an MCMC simulation can be chosen through a variety of 
approaches. The initial point can be a random draw from the prior distribution, or even the mean 
of the prior distribution can be used. The random draw of the posterior distribution can also be 
used, provided a warm-up period has been complete and the variance of the posterior distribution 
has stabilized. It there is a decent level of confidence in the prior distribution, or the prior data is 
highly correlated as with time-series data, a Gibbs sampling approach can be used to generate an 
approximation of the first proposal point.  

9.6 Time Series Decomposition of Monthly TMI Data 

The initial time series analysis gathered from the deterministic model must be decomposed 
into long-term/seasonal trends and the monthly deviations from those trends, referred to as noise 
(Montgomery et al. 2016). The time series decomposition includes stationarity tests, 
autocorrelation tests, determination of lag, and normality tests of the residual values to determine 
the most efficient model to fit the data. The stochastic model proposed herein, utilizes a second-
order moving average (MA(2)) of the monthly TMI (moving average of the monthly change in 
TMI) to fit the historic data. 

 
The second order moving average (MA(2)) model of the differenced TMI (dTMI) is expressed as: 
 
 1 1 2 2t TMI t t tdTMI µ ε θ ε θ ε− −= + − −  (9-18) 

Where is the average value of the sampled dTMI and represents the ACF parameters for 
dTMI at the lag identified by the subscripts. To improve the fit, the average value of the sample 
can be replaced by the moving average of the terms prior with lag = 3, as presented in the figure 
below. Note that once the dTMI value is estimated, the TMI term for a given month is calculated 
adding the change to the previous term.  The dTMI model expressed in Eq. 104 will serve as the 
basis for the stochastic forecasting solution. However, the stochastic approach will incorporate the 
monthly statistics associated with each of the parameters in the equation (i.e., monthly means of 
dTMI, and autocorrelated monthly residual values). A visual example of the time series 
decomposition for using the MA(2) model of the monthly dTMI values is presented in Figure 9-7. 

dTMIµ
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Figure 9-7 Time Series Decomposition of TMI and dTMI (black) using Moving Average 

(MA in red) with lag = 12 and 3, respectively, and the Associated Monthly Residuals (blue). 

9.7 MCMC Framework for Stochastic Climate Parameter Forecasting 

The monthly parameterized prior distributions for the MCMC TMI forecast model are obtained 
using the procedures presented in the diagram in Figure 9-8. 
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Figure 9-8 Procedure for Obtaining Monthly Parameterized Prior Distributions for the 

TMI MCMC Forecast Model 
 
The overall framework of the MCMC algorithm using a Metropolis-Hastings acceptance criteria 
is presented in Figure 9-9. 
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Figure 9-9 Framework for monthly MCMC TMI forecast model using the Metropolis-

Hasting Acceptance criteria. 

9.7.1 Stability and Optimization of Stochastic Climate Parameter Forecasting Model 

The MCMC framework for stochastically forecasting the Thornthwaite Moisture Index went 
through numerous was optimized through numerous adaptations through iterations of trial and 
error until a useful model was obtained which could be efficiently applied to just about all locations 
in the US. The following concepts were incorporated into the analysis to help evaluate the stability 
and optimize the performance of the climate model.  
 

• The generation of the proposal point initially began with a randomly generated value from 
the monthly parameterized prior distributions. To improve the efficiency and acceptance 
rate of the MCMC algorithm, a multivariate random number based on the posterior 
distributions within the lag period for dTMI is included in the final model. Frameworks 
which use Gaussian noise randomly generated number and the autocorrelation with the 
data points within the lag period was also explored but no benefit to the model performance 
was observed. 

• The acceptance rate of Metropolis Hasting algorithm was calculated and evaluated to see 
if it fell within the typically accepted value for multidimensional models of 24%.  

• A warm-up period was included in the algorithm which was set at 50% of the total 
simulations per recommendations by Gelman et al. (2014).  
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• An adaptive Metropolis-Hastings algorithm was developed which updated the target 
variance after a user-defined number of iterations to help drive and maintain the acceptance 
criteria around 24%. The adjustment factor and the update period were initially chosen to 
be 0.2 and 50 simulations based on recommendations by Vrugt (2016)  

• Bounds of the posterior forecasted data were implemented on the TMI values, the moving 
average of the TMI, and the moving average of the change in TMI. The bounds were 
defined as three standards deviations on each side of the mean for the monthly 
parameterized prior data. The bound checks occur at each sequential time step and include 
a “step-back” process if the current proposal point falls outside of the bounds. On the time 
scale, the step-back period was set to be the lag of dTMI or TMI depending on which 
parameter had failed the bound checks. The implementation of the bound check and the 
step-back process is a rough approach to adding the benefit of a Hamilton Monte Carlo 
type algorithm without the direct inclusion of the energy expressions or the leapfrog 
algorithm.    

• The Metropolis-Hasting algorithm was updated to include the conditional probability of 
the proposal TMI to help drive the posterior distribution of TMI closer to the target 
distribution and help improve stability of the model by reducing the variance of the 
posterior distribution of TMI.   

9.7.2 Validation of Stochastic TMI Forecast Model 

Five locations within differing climate regions were used to evaluate the performance of the TMI 
forecast model. The simulated time period was from March 2017 to March 2022 (5 years). By 
using a forecast window of historical data, a comparison can be made between the forecasted TMI 
and the actual TMI during that period. Note that the historical data during the comparison period 
was not included in the prior distributions. Thirty years of prior climate data from NOAA was 
collected and used to develop monthly distributions for TMI, dTMI, TMI_MA, and dTMI_MA. 
Using a monthly-based component-wise setup allows for the qualitative knowledge that weather 
data is typically similar in each month year after year; however, the monthly component-wise setup 
limits the number of data points for each component distribution to the number of years of 
historical data available at the site. The five locations used for evaluation of the proposed TMI 
forecast model are presented in Table 9-1 along with the NOAA weather station ID, the 30-year 
TMI, and the climate region as defined by AS2870 (2011).  
 
 
 
 

Table 9-1. Sites for Validation Study of the Proposed Stochastic TMI Forecast Model 
Location NOAA Weather Station (ID#) 30-Year TMI Climate Region* 

Arlington, VA Washington Reagan Airport 
(USW00013743) 24 Wet Coastal / Alpine 
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Location NOAA Weather Station (ID#) 30-Year TMI Climate Region* 

Dallas, TX Dallas FAA Airport 
(USW00013960) -5 Wet Temperate to 

Temperate 

Denver, CO Denver Central Park 
(USW00023062) -19 Dry Temperate 

Salt Lake City, UT Salt Lake City International Airport 
(USW00024127) -26 Semi-Arid 

Tempe, AZ Phoenix Sky Harbor International Airport 
(USW00013743) -58 Arid 

* As defined by AS2870 (2011) based on TMI 
 
The autocorrelation functions, histograms, and boxplots of the parameterized data of the monthly 
TMI time-series decomposition and the MCMC forecasted TMI for the five locations are presented 
in Appendix E. The results of the TMI forecast for Arlington, VA, categorized as a wet 
coastal/alpine climatic region, are presented in Figure 4-5. The results of the TMI forecast for 
Dallas, TX, categorized as a Temperate to Wet Temperate climatic region, are presented in Figure 
4-6. The results of the TMI forecast for Denver, CO, categorized as a dry temperate climatic region, 
are presented in Figure 4-7. The results of the TMI forecast for Salt Lake City, UT, categorized as 
a Semi-Arid climatic region, are presented in Figure 9-10. The results of the TMI forecast for 
Tempe, AZ, categorized as an arid climatic region, are presented in Figure 9-11. The figures 
present the prior data, the forecasted data, and the true data within the forecast period for 
comparisons and validation purposes.  
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Figure 9-10 Prior and Forecasted Monthly TMI from 03/2017 to 03/2022 for Arlington, VA 

(NOAA Station USW00013743) 
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Figure 9-11 Prior and Forecasted Monthly TMI from 03/2017 to 03/2022 for Dallas, TX 

(NOAA Station USW00013960) 
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Figure 9-12 Prior and Forecasted Monthly TMI from 03/2017 to 03/2022 for Denver, CO 

(NOAA Station USW00023062) 
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Figure 9-13 Prior and Forecasted Monthly TMI from 03/2017 to 03/2022 for Salt Lake 

City, UT (NOAA Station USW00024127) 
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Figure 9-14 Prior and Forecasted Monthly TMI from 03/2017 to 03/2022 for Tempe, AZ 

(NOAA Station USW00013743) 
 
Based on a visual evaluation of the forecasted TMI and monthly change in TMI of the five 
locations presented in Table 9-1, the following conclusions cans be made regarding the validation 
of proposed model.  

• The prior TMI data (30 years) of the wet coastal/alpine location in Arlington, VA exhibited 
relatively high seasonal variation. The forecasted dTMI captures most of the true data 
within one standard deviation from the forecasted mean and nearly all of the extreme values 
of the true data are captured within two standard deviations from the forecasted mean. The 
individual forecasted chains of dTMI resulted in show that there were several forecasted 
chains which consisted of extreme values greater than both the prior data and the true data 
within the forecast period.  Although the dTMI forecast provides adequate representation 
of the true data and the variability of the prior data, the TMI forecast fails to encompass 
the extreme wetting period between 2017 and 2020 within two standard deviations of the 
mean, which is most likely caused by this period exhibiting TMI values higher than data 
from the 30 years of prior data.  

• The example forecast for the wet temperate to temperate location in Dallas, TX resulted in 
a relatively better fit to the true data. Although the dTMI forecast does not fully capture all 
extreme values within two standard deviations from the mean, the corresponding TMI 
forecast data does encompass the extreme events within 2 standard deviations. This 
improvement may be due to the four years of relatively dry (low) TMI values followed by 
a two-year period of wetter (increased) TMI values just before the start of the forecast 
period. Additionally, the period of wetting prior to the forecast period consists of higher 
TMI values that the true data within the forecast period. Overall, the Bayesian TMI forecast 
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model for this example location in a wet temperate to temperate climate region produces 
forecasted values which adequately represent the variability of the prior data and 
encompassed the potential extreme events. 

• The example forecasts for the dry temperate and semi-arid locations of Denver, CO and 
Salt Lake City, UT, respectively, produced promising results for the forecasted dTMI and 
TMI data. The moving of the forecasted dTMI is similar to the true values within the 
forecast period with the exception of a few extreme values. The standard deviations of the 
forecasted dTMI data are much closer to the mean values, compared to the wet 
coastal/alpine and wet temperate to temperate examples. This reduction in forecasted 
variability is also observed on the forecasted TMI plots, without a noticeable reduction in 
the over forecast performance. Most of the true TMI data for both the dry temperate and 
the semi-arid example are encompassed within one standard deviation from the forecasted 
mean with the exception of one extreme period in the Salt Lake City example from 2019 
to 2020, which falls just outside two standard deviations from the forecasted mean.  

• The example forecast for the arid location of Tempe, AZ also produced a relatively good 
fit to the true data, although the variability and volatility in both TMI data for this climate 
region was minimal. 

9.8 Performance of the Bayesian TMI Forecast Model 

Overall, the visual evaluation of the Bayesian TMI forecast model for the five locations 
explored herein provide an adequate job of producing forecasted data which exhibit near the same 
seasonal averages and monthly variation as the prior and the true data within the forecast period. 
The forecast model appeared to perform best for the dry temperate and semi-arid locations which 
is a promising outcome for the potential implementation for unsaturated soil shrink-swell volume 
change analysis as these climate regions are commonly associated with expansive soil related 
issues to infrastructure. The performance of the model in the arid region is tough to evaluate using 
the Tempe, AZ example as the variability of the prior data was minimal. It appears that the climate 
within this region is relatively stable which would indicate that the issues with shrink-swell soils 
would be governed by extreme events and not the natural seasonal moisture variations.   

 
To further evaluate the performance of the Bayesian TMI forecast model, the histograms of the 
monthly parameterized priors and posterior (forecasted) dTMI and TMI values were generated and 
are presented in Appendix E for each of the five locations used in the validation study. Figure 9-
15 and Figure 9-17 present the dTMI and TMI prior and posterior histograms, fitted with normal 
distributions, for the Arlington, VA validation study location, respectively. Figure 9-16 and  Figure 
9-18 present similar data for the Dallas, TX validation study location.  



9-30 
 

 
Figure 9-15 Histograms of Prior and Posterior (forecasted) Monthly Change in TMI for the 

Arlington, VA Validation Study Site from 03/2017 to 03/2022. 
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Figure 9-16  Histograms of Prior and Posterior (forecasted) Monthly Change in TMI for 

the Dallas, TX Validation Study Site from 03/2017 to 03/2022. 
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Figure 9-17 Histograms of Prior and Posterior (forecasted) TMI for the Arlington, VA 

Validation Study Site from 03/2017 to 03/2022. 
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Figure 9-18 Histograms of Prior and Posterior (forecasted) TMI for the Dallas, TX 

Validation Study Site from 03/2017 to 03/2022. 

 
The dTMI histograms for the Arlington study location indicate that posterior data produced by the 
Bayesian TMI forecast model resulted in a reduction of variability of the monthly data compared 
to the priors, which can be observed by the narrower distribution fit and increased frequency of 
values near the mean (i.e., increased kurtosis). This is not a favorable result as the forecast model 
under predicts the variability of the historical data. The TMI histograms for the Arlington study 
site display another unfavorable outcome of the forecasted data as the average of each monthly 
posterior distribution noticeably differs (more positive) than the average of the prior distributions. 
This indicates that the forecast model is not producing data which follows the mean of the historical 
prior data. These two lacks of fits between the forecasted posterior data and the historical prior 
data may be what caused the lack of fit of the extreme event shown previously in Figure 4-5.  
In contrast, the prior and posterior histograms for the dTMI values for the Dallas, TX study location 
indicate that the Bayesian TMI forecast model is over predicting the variability of the prior data 
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(decreased kurtosis) for most of the months; and the distributions of the TMI prior and posterior 
data show that the model is producing nearly equivalent means for each of the monthly priors.  

9.9 Stability of the Bayesian TMI Forecast Model  

The stability of the Bayesian TMI Forecast Model was tested by performing forecast simulations 
for differing starting seasons/dates, over varying forecast durations (2 to 20 years), for the five 
locations used in the validation study. The graphical results of the stability analyses are presented 
in Appendix F. In summary, the forecast model performed sufficiently and efficiently regardless 
of the initial conditions and the duration of the forecast period. However, the stability of the model 
was not tested using priors with limited or missing data, or at locations where the average TMI is 
near the limits of either -100 or 100.  

9.10 Potential Future Improvements to the Bayesian TMI Forecast Model 

The research efforts produced useful frameworks for the stochastic forecast of the climatic 
parameter TMI using time-series and Bayesian Inference techniques Although the proposed model 
produced promising results for the sites explored in the validation study, which has potential for 
several further improvements.  

• The inclusion of multiple weather station data should be incorporated into both the 
deterministic and the stochastic models. For the deterministic model, a decision would have 
to be made to use the average monthly data, or another statistically representative monthly 
value. Although it is not a straightforward analysis, the most conservative approach would 
be to use the monthly data which results in the greatest monthly changes and/or seasonal 
variations, regardless of the location of the weather station (assuming only weather stations 
near the site that are chosen). 

• Improvement and optimization of the Bayesian forecast model for the climatic parameter 
TMI to include an adaptive Langevin Markov Chain (LMC) or a Hamiltonian Markov 
Chain (HMC) which incorporates a physics-based approach to control the stability and 
limit the random walk potential of the simulated time-series by representing the MCMC 
framework as energy equations (potential and kinetic). The HMC framework also includes 
a leap-frog step which can significantly optimize the computation time of the MCMC 
simulation. 

• Evaluation of extreme climate events (in perspective of TMI) with the potential 
development of a Bayesian probability model which can force the forecasted TMI values 
to include some percentage and probability of extreme events into the forecasted data.  

9.11 Limitations of the Bayesian TMI Forecast Model 

The author recommends that the models be treated as preliminary framework which needs further 
optimization, validation, and sensitivity analyses, the following efforts should be performed as part 
of future research work: 
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• As displayed in the outcome of the Arlington, VA validation study, the proposed Bayesian 
TMI forecast model has potential to miss extreme events which were not characterized by 
the 30 years of prior climate data.  

The Bayesian TMI forecast model presented herein is programmed to produce forecasts which 
sufficiently represent the variability and volatility of the prior data without “walking” too far from 
the prior distributions. If a more conservative approach is warranted which encompasses some pre-
defined increase in the variability/volatility of the forecasted data, the tuning criteria can be 
increased by either increasing the initial tuning factor to be greater than 2.4. An additional stability 
study should be performed in such a case.   
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