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Background

▶ Inference about a target population based on sample data
relies on the assumption
▶ the sample is representative
▶ the sample can be adjusted to account for

nonrepresentativeness
▶ Probability samples are expensive to collect and often not

available in real data problems
▶ probability surveys with low response rates are often

nonrepresentative
▶ Nonprobability samples are more widely available

▶ unknown inclusion mechanisms and not representative of
the population
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Nonprobability samples

▶ Types of nonprobability sampling (Baker et al. 2013; Elliott
and Valliant 2017)
▶ convenience sampling (e.g. volunteer panels, mall

intercepts, river samples, observational studies)
▶ sampling matching (e.g. quota sampling)
▶ network sampling (e.g. snowball sampling)
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Data integration

▶ Using nonprobability samples for population inference
requires additional data information

▶ Such data can include
▶ population data, e.g. administrative records, electronic

health records
▶ well designed and executed probability surveys
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Incorporating different types of population data

Unit-level population data Aggregated population data

Y : survey outcomes of interest; X : continuous auxiliary variables;
Z : discrete auxiliary variables; U: finite population; s: nonprobability sample.
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Integrating with probability surveys

Scenario 1 Scenario 2

Scenario 3

d denotes design variables in the probability sample.
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Weighting methods

▶ Inverse propensity weighting
▶ predict the probability being in the nonprobability sample
▶ use unit-level population data or a probability survey that is

not subject to coverage or other types of bias (Elliott and
Davis, 2005; Elliott 2009; Chen et al. 2020)

▶ Calibration weighting
▶ calibrated estimator (Deville & Särndal 1992; Kott 2006)
▶ raking and poststratification
▶ use aggregated population data or probability surveys
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Prediction approaches

▶ Consider the simple case of estimating a population total
(Valliant, Dorfman & Royall, 2000)
▶ fit a model of Y on X and Z using the sample
▶ predict the values of Y in the population that are not

included in the sample
▶ estimate the population total: t̂1 =

∑
i∈s yi +

∑
j /∈s ŷj or

t̂2 =
∑

i∈U ŷi .
▶ Regularized regression approach

▶ penalized spline regression (Zheng and Little 2005; Chen,
Elliott, and Little 2010)

▶ multilevel regression and poststratification (MRP; Wang et
al. 2015)
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Leveraging high-dimensional auxiliary variables

▶ In the era of “big data”, more and more auxiliary
information became available

▶ Novel methods are needed to incorporate the
high-dimensional auxiliary variables
▶ pseudo-likelihood approach for combining multiple

non-survey data with high dimensionality (Gao and Carroll,
2017)

▶ model-based calibration approach using LASSO (Chen et
al. 2018)

▶ a doubly robust variable selection and estimation strategy
(Yang et al. 2019)
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Machine learning in high-dimensional contexts

▶ Machine learning algorithms
▶ effectively process large amounts of continuous and

discrete high-dimensional data
▶ automatically select features associated with sample

inclusion and survey outcomes
▶ excel in making predictions, incorporating nonlinear

relationships and interactions
▶ Bayesian machine learning

▶ leverage Bayesian statistics to model uncertainty and make
probabilistic predictions
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Prediction inference using BART

▶ Estimate population mean by integrating with individual-level
population data

▶ Consider Bayesian Additive Regression Trees (BART)
(Chipman, George, and McCulloch 2010) and soft BART (Linero
and Yang 2018). With continuous y ,

y = G(z,x) + ϵ =
M∑

m=1

g(z,x;Tm, µm) + ϵ, ϵ ∼ N(0, σ2) (1)
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Prediction inference using BART (Cont.)

▶ Inspired by Little and An (2004) in missing data literature,
we extended the BART prediction to a doubly robust
approach
▶ estimate π = Pr(I = 1|z,x) using probit BART
▶ model y using y = G(z,x, π̂) + ϵ

▶ Key findings
▶ the regularized prediction methods using (soft) BART

▶ effectively reduce selection bias in the nonrandom sample
▶ yield efficient estimates of population quantities
▶ with close to the nominal level coverage rate

▶ adding estimated propensity score as a covariate can offer
protection from model misspecification, when important
predictors are omitted from the model.
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Application example

▶ Application to a COVID-19 study
▶ estimand of interest: mean QTc prolongation of the 470

COVID-19 patients who received hydroxychloroquine
treatments during 03/01/20 - 05/01/20 at CUIMC (Rubin et
al. 2021)

▶ nonprobability sample: 244 patients had
ECG QTc prolongation measurements

▶ admin data: EHR data of all 470
patients on demographic characteristics
and relevant biomarker characteristics
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Some extensions

▶ Two-phase design: phase I with probability sample and
phase II with nonprobability sample (Wang et al. 2024)

▶ Multilevel regression and poststratification using margins of
high-dimensional post-stratifiers (Pitts et al. 2024)
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Data privacy concerns

▶ Inference for nonprobability samples relies on access to
rich auxiliary information

▶ Data privacy is often a concern when releasing auxiliary
information

▶ An application example
▶ a nonprobability sample of national guard service members

was used to study psychological wellbeing
▶ demographic details and years of service for all service

members were available through an administrative file
▶ the confidential population data with individual-level

continuous data cannot be released due to disclosure risks
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Summary

▶ Nonprobability samples are widely used for research
purposes.

▶ Data integration offers an effective solution to improve
inference for nonprobability samples.

▶ Machine learning algorithms are powerful tools for robust
and efficient data analysis.
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Key challenges in data integration

▶ Confidentiality risks increase with the release of more
granular auxiliary information
▶ synthetic data can help mitigate disclosure risks, but adding

noise may reduce data utility
▶ balancing data utility and privacy remains a critical area for

future research
▶ Heterogeneity among data sources poses significant

challenges to data integration
▶ covariate shift problem
▶ varied data structures
▶ differences in data quality
▶ efficient integration of diverse data sources is a crucial

research area
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Refining study design and data collection

▶ How can we improve the utility of probability surveys for
inference of nonprobability samples?
▶ for example, with the growing popularity of internet and

social media-based sample recruitment, adding questions
about internet access and social media usage to probability
surveys can increase their relevance

▶ Can we improve the design and data collection process for
nonprobability samples?
▶ for example, implementing control during sample

recruitment can help reduce the covariate shift problem
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Statistical methods and software advances

▶ In addition to selection bias, nonprobability samples are
also prone to measurement error and missing data.
▶ there is a need for methods that can address all these

issues simultaneously
▶ Potential of large language models

▶ enhanced data imputation and synthetic data generation
▶ improved robustness and efficiency in data analysis

▶ Workflow and software tools needed to facilitate
▶ the design of nonprobability surveys with generalizability

considerations for post-survey analysis
▶ inference from nonprobability surveys through data

integration
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Other areas for future research

▶ Extend from the estimation of descriptive statistics to
analytic inference, e.g., regression, small area estimation

▶ Combine regression modeling and inverse propensity
weighting (Gelman, Si, and West 2024)

▶ Other aspects of generalization
▶ causal inference
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