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Machine learning in healthcare

e Methods
e Opportunities and examples

e Shared Vision



Analytical methods

artificial intelligence
creating smart systems

machine learning

techniques to learn from data to develop
smarter and more adaptable systems




Analyticalmethods

Capacity to learn complex relationships
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Al and neural networks - why now?
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Neural networks learn from examples

flower

Make adjustments to model so output is

labeled examples closer to label for any given example



Supervised Machine Learning requires:

training examples algorithms and tools




Machine Learning in healthcare also requires:

Input, support, and trust of Domain expertise
patients, communities, and
providers.
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Potential to perpetuate bias...

Bias < Bias
in — .[;F —> | out

System is able to learn, improving at a task with experience
...but it only learns what it sees.



Potential to address bias too...

SPECIAL ARTICLE Annals of Internal Medicine

Ensuring Fairness in Machine Learning to Advance Health Equity

Alvin Rajkomar, MD*; Michaela Hardt, PhD*; Michael D. Howell, MD, MPH; Greg Corrado, PhD; and Marshall H. Chin, MD, MPH

“Consideration of fairness in machine
learning allows us to reexamine
historical bias and proactively
promote a more equitable future.”

Correct bias in the data
Ensure proper representation of minority
groups in training and validation

Correct bias in the model design
Labels should be adjudicated truths
(l.e. using the delphi method)

Ensure equal outcomes & resource
allocations when using Al



Developing and validating healthcare models

Many unique challenges

1 Ground Truth and benchmarks
2. Validation and generalizability
3. Understanding context

4. Integration and actionability

5. Transparency - understanding and learning from the models



Google Health




150

exabytes of healthcare data




Alresearch and development is a cornerstone of our work
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Google Al Principles: for responsible development

Al should:

o be socially beneficial

9 avoid creating or reinforcing unfair bias
9 be built and tested for safety

9 be accountable to people

6 incorporate privacy design principles

@ uphold high standards of scientific
excellence

0 be made available for uses that accord
with these principles

applications we will not pursue:

o likely to cause overall harm
9 principal purpose to direct

9 KU &illance violating internationally
accepted norms

9 purpose contravenes international
law and human rights



Opportunities in oncology

Democratizing Expertise
Actionable Information

Discovery and Translation

ARICLDR0LGRDLI0DLORAS0DLA0RLOARD0L0L
BOLLOOLGLAGOLGLORENERDLOLORERL0LEL0
RIGLDODOLEIOLDLOEDEQ00DLRLECROREL0
AM0CDLELOLCROLDLO0IO0NLLE0OLE0DLD
BE1ELLE0D0LEO0LDL0DBLEL0L0LS0SL03000
pioioligonoigloonni0l0i0L0L0L0030301)
iilgibeiiiiooioiniiialonniolsinignt
DROLDLCLOLOLDOLDRA00RLLO0LELER0SaAD
033G0LEEDERLDE0EAR0EN " =

RAQRORFES




Democratizing Expertise

Access to expert care everywhere
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Detection can be
a needle in a
haystack problem

10 gigapixel whole slide images

Combination of
pathologist + model
more accurate than
either alone

Liu et al. Arch Pathol Lab Med 20 18
Steiner et al. AJSP2018



Deep learning to identify and grade prostate cancer

Deep Learning System similar to pathologist interpretation
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Radiology




End-to-end lung cancer screening with
three-dimensional deep learning on low-dose

chest computed tomography Compared to 6 radiologists, the model

Diego Ardila®©?®, Atilla P. Kiraly'®, Sujeeth Bharadwaj'®, Bokyung Choi'?, Joshua J. Reicher?, h a d an a b SO IU t e reduct|0n 0 f
Lily Peng', Daniel Tse @™, Mozziyar Etemadi®3, Wenxing Ye', Greg Corrado’, David P. Naidich* 0/ni s
and Shravya Shetty e |11%in false positives

(Nature Medicine 2019)

e |5%in false negatives
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Actionable Information

Elevating public health




2018: Health Impact study
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impact on the heart
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Health Impacts in Oakland, CA

(from dieseltrucks and other sources)
www.edf.org/airqualitymaps/how-pollution-impacts-human-health
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Alexeeff et al. Environmental Health 20 17


http://www.edf.org/airqualitymaps/how-pollution-impacts-human-health

easternhealth |

Analyzing records from ambulances
to uncover trends and potential
points of intervention around suicide



Discovery and Translation

Understanding health and disease.
Translating from code to care.




Shared vision:

lex data landscape

Cooperatively exploring the comp

Medical Images
Environmental

Genomics
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Thank you!
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