

HARVARD T.H. CHAN SCHOOL OF PUBLIC HEALTH

Center for Health and the Global Environment

Value of Information to Inform Decision Making Under Uncertainty

VALUE OF INFORMATION TO INFORM DECISION MAKING UNDER UNCERTAINTY

Katherine von Stackelberg, ScD Center for Health and the Global Environment Harvard Center for Risk Analysis NEK Associates LTD kvon@hsph.harvard.edu

- Prioritize where additional investment will lead to maximal benefits
- Identify research areas with the greatest likelihood of influencing clinical practice and patient outcomes
- Quantify the expected opportunity loss from decision making under uncertainty by estimating the value of obtaining additional information through research

- Based on Bayes Rule: P(A|B) = P(B|A)P(A)/P(B)
- Traditional hypothesis testing (e.g., clinical trial) gives you p(data|hypothesis) but what you want is p(hypothesis|data)
- There is a 90% chance that the net benefit of protocol a exceeds that of protocol b
- p(expected benefit of future study|existing [clinical trial] data)

- Goal is to make the decision offering the greatest net benefit given constraints
- There is uncertainty in the inputs to the decision
- Expected cost of uncertainty is determined by the probability that a decision based on existing information will be wrong and the consequences if the wrong decision is made
- Expected value of (im)perfect information

- The estimated mean net benefit of the new technology/drug/intervention
- The amount and results of existing data
- The value placed on opportunity losses when they occur
- The size of the patient population who could benefit from the new technology/drug/intervention

 $EVPI = E\{\max_{a} NMB(a,s)\} - \max_{a} \{NMB(a,s)\}$

- where E{max_a NMB(*a*,*s*)} represents the expected net monetary benefits under perfect information
- max_a E{NMB(*a*,*s*)} represents the expected net monetary benefits under prior information
- Assess the optimal action for all possible values of s and then determine the weighted average of the resulting values over the prior belief about the likelihood of each event

- Benefits described in terms of utilities, QALYs, DALYs
- \$/QALY or other cost-effectiveness ratios
- Predicted costs as compared to monetized benefits
- Number of patients impacted is essential for population VOI

Example Decision Tree

- What would it be worth to conduct an observational study on n = 60 patients who are on the new treatment?
- EVSI = \$5,550 per patient; compare to cost
- What would be the EVSI for a study allocating nT = 200 patients to new treatment and another nC = 200 to standard care?
- EVSI = \$3,260 per patient

Conclusions

- Value of information techniques are used to evaluate research priorities based on reducing uncertainty
- Builds on existing cost-effectiveness studies using Bayesian statistics
- No "off the shelf" software requires linking models, software platforms

Further Reading

- Thorn et al. 2015 Interpretation of the Expected Value of Perfect Information and Research Recommendations: A Systematic Review and Empirical Investigation, *Medical Decision Making*, DOI: 10.1177/0272989X15586552
- Steuten et al. 2013 A Systematic and Critical Review of the Evolving Methods and Applications of Value of Information in Academia and Practice, *PharmacoEconomics*, 31:25–48
- Carlson et al. 2013 Value-of-Information Analysis within a Stakeholder-Driven Research Prioritization Process in a US Setting: An Application in Cancer Genomics, *Medical Decision Making*, 33:463–471.
- Andronis et al. 2015 A Practical Application of Value of Information and Prospective Payback of Research to Prioritize Evaluative Research, *Medical Decision Making*, DOI: 10.1177/0272989X15594369