**U.S. AIR FORCE** 



USSF

# Trust Research in AFRL

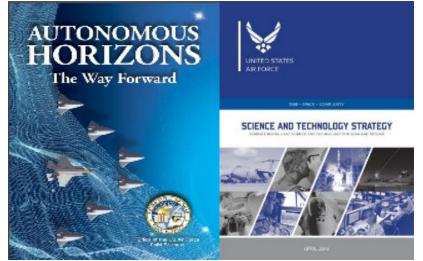
Joseph Lyons, PhD

**Collaborative Interfaces and Teaming Branch** 

29 JUL 2021

**DISTRIBUTION STATEMENT A: Approved for Public Release** 




## **Trust Research is a Strategic Imperative**

**AF2030 S&T Strategy** - Trusted data, Trusted AI, Trust required to support lethal combat operations

**Autonomous Horizons Vol. 2** – "Autonomous systems should...Ensure trust...tenets of trust include...transparency for decision making"

#### **Interfaces for Applied Systems**

-Medusa C2 – applying Play Calling approach in novel displays -Skyborg – Transfer of Authority of Groups/Fighter-based control



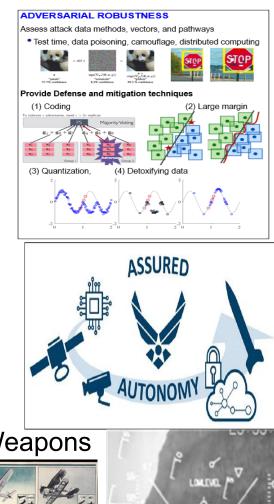


*"Trust in distributed teams", "Multi-domain collaboration"* – **SAB Study on Technologies for Enabling Resilient C2 (2018)** 

-JADC2 Operating Concept – Decision Making/Convergence of effects

-Space Trusted Autonomy – distributed comm, mixed initiative work, trustworthiness

**Trust/Transparency in AI –** DARPA ACE; Squad-X; Alias; Trust of ML, F-35 AGCAS








## **Trust is Relevant Across AFRL**

- 711 HPW
  - Trust in autonomy, transparency, biases
- AFOSR
  - Trust and Influence Portfolio, Formal Verification Methods
- Information Directorate (\*recent Trusted AI event)
  - Robust and resilient machine learning
- Aerospace Systems Directorate
  - Certification of autonomous systems/vehicle behaviors
- Space Systems Directorate
  - Space trusted autonomy
- Munitions Directorate
  - V&V to build trust in Networked Collaborative Autonomous Weapons
- Materials Directorate
  - Trust in robotics/precision manufacturing
- Sensors Directorate
  - Trusted data, data fusion







## Trust Workshops/Organizing Activities (RH & AFOSR)

- Trust management in cyberspace 2009
- Trust-based vulnerabilities 2009
  - Individual differences (PAS; suspicion)
  - Culture
- Directorate Trust Deep Dive 2010
  - Measurement, predictors of trust, culture
- Trust measurement 2010
- Trust in Autonomous Systems 2012
  - 40 experts across academia-industry-gov't
  - Basic Research Initiative & multiple grants
- Trust in human-agent teams 2015
- Support to other programs: IARPA, DARPA, OSD, NASA, FAA, IDA, ACC, etc.





## **Shallow Dive into 711 HPW Trust Research**

- Trust in automation
  - Transparency, reliability
- Trust of fielded systems – Acceptance of automation
- Trust in human-autonomy teams/Robots
  - Transparency, teaming factors
- Trust of software code
  Predictors of re-use
- Interpersonal trust
  - Swift Trust in JADC2 teams











#### **Collaborative Interfaces and Teaming CRA**

Human-Autonomy Collaboration Distributed, Heterogeneous Teaming Solutions

The Collaborative Interfaces and Teaming CRA focuses on: 1) flexible, directable, and transparent Human-Autonomy Teaming (HAT) solutions, 2) the science of human-human teaming in distributed multi-domain contexts, and 3) development of technologies to facilitate shared authority of autonomy and common ground within and between mixed human-autonomy teams.



Increased focus on teaming is an intentional strategic pivot toward JADC2

#### AFRL

## **Human-Autonomy Collaboration LOE**

- 6.2 FY21 Tasks
  - Models/Metrics for Human-Autonomy Teaming
  - Collaborative Interfaces Research
    - HMI design
    - Context-aware agents
    - Task manager
  - Trust in Intelligent Machines
    - Swarms
    - F-35 AGCAS
    - Trust of Robots/Agents
  - Manned-Unmanned Teaming (Fighter-based control)
  - Transfer of Authority distributed OPs
  - Transparency in Machine Learning Systems (\*New area in FY21)
  - Synthetic Teammates and their impact on trust in multi-team systems (\*New area in FY21)

CMU Center of Excellence

F-35 JPO; OSD Safety Office

SkyFlagONE [ABMS]; Medusa C2 [PEO Digital]; Assured Base Operations

Aid for Rapid SA Acquisition

Lyons et al. (2021) Frontiers in Psychology

Battle Card Concept /AISC

## **Distributed, Heterogeneous Teaming Solutions LOE**

- 6.2 Tasks
  - Team performance metrics
  - Team kickstarter methods
    - How to facilitate swift trust among team members
    - Skill/role deficiencies (\*New area FY21)
  - Multi-domain teaming
    - Play calling approaches for cyber
    - Multi-domain Course of Action (COA) generation and analysis
    - Integration of effects for Air, Space, and Cyber (aspirational)
  - Team resilience methods
    - How to ensure effective team process amid degradation/change (FY22 start)

Tolston et al. (2019). *BRM* (Wing Top 10 Publications 2020) -Analysis of Black Skies Exercise Data

805<sup>th</sup> Combat Training Squadron – Shadow Ops Center Network (ShOC-N); Nat Space Defense Center

Tech Sprint 2021

Capiola et al. (2020) JCEDM

EMS&A – integration of Cyber into Battle Management



## **Trust Research Example – AGCAS Study 2015-2018**

- Objective: Understanding antecedents of automation trust among pilots over time (Ho et al., 2017a; b; Koltai et al., 2014; Lyons et al., 2016; 2017)
- Interview & survey research
  - Sampled approx. 500 F-16 pilots, 70 F-22 pilots \*by ACC request (only F-16 data reported herein)
  - Baselined trust, identified trust antecedents
- Results were used to improve the system by working with engineers
- Activation data provided to various stakeholders
  - Understanding of activations outside of test were largely unknown
- Similar Studies conducted with Rotary Wing Aircraft community & F-35







### **AGCAS Year 1**

- Year 1: Survey (N = 142), Interview (N = 168)
- Primary Findings:
  - Trust was highly variable moderate at best
    - Uniquely related to PAS, perceived benefits, & performance
    - Pedigree of the test community was high & that helped
    - Business case was very strong
    - Chevrons were viewed very positively helped make the system predictable
    - Activation base rates were low approx. 10%
  - Lots of early errors causing uncertainty
    - Key was attribution & technical information
  - Lots of stories good and bad
    - Early system save was strong trust booster
  - Pilots had little knowledge of AGCAS lots of confusion
  - Policies/practices were varied
    - Some units flew with it off, turned off for BDC/formation flights





#### **AGCAS Year 2**

- Year 2: Survey (N = 100), Interview (N = 131)
- Trust was moderate to high
  - Performance was the key driver
  - Stories of the saves pervaded the pilot community
    - Tipping point was student save w/video
  - Knowledge increased system began to become predictable
    - Experiences with activations increased
  - Chevrons became predictable
  - Business case unquestionable
  - However, growing concern over novel nuisance factor
  - Activate rates were around 20%
  - Pilots were instructed to use PARS in training
    - Added familiarity





#### **AGCAS Year 3**

- Year 3: Survey (N = 77), Interview (N = 103)
- Trust was very high and universal
  - Saves were very well known
    - Student save video became kind of legendary
    - Student and instructor save sealed the deal video impact
  - Perceived benefits were universal and huge trust booster
  - System was understandable and integrated into the pilot curriculum
  - Chevrons incorporated into Strafe training & ops
  - Activation rates were approx. 34%
    - Direct experience with the system was growing
    - Plus use of PARS supported experience of maneuver
      - Also use of PARS operationally that boosted AGCAS trust
  - Nuisance issue had a fix coming
    - It was understandable, predictable, and pilots had directability
  - Instructor pilot anecdote



## Recent Basic Trust Research – funded under AFOSR's Trust & Influence Portfolio

- Trust biases in HRI (PI: Dr. Gene Alarcon)
  - Studies empirically examining trustworthiness biases toward robots
    - Benevolence/integrity violations (published in Applied Ergonomics)
    - Full ABI manipulations robot vs human (IEEE HMS conference; multiple manuscripts under review)
    - Effects of Perfect Automation Schema on biases (in progress)
- Human-agent teaming/Compliance (PI: Dr. Gregory Funke)
  - Capacity to cooperate in human-agent interactions (online data collection complete new start)
  - Robot compliance (Frontiers in Psychology 2021; HFES 2019)
- Transparency in HRI (PI: Dr. Joseph Lyons)
  - Studies examining facets of transparency in autonomous robot contexts
    - Stated Social Intent (completed, published in Human factors 2021; Applied Ergonomics 2020)
    - Decision authority (completed, under review)
    - Robot etiquette (completed, under review)
- Mental models in HRI (PI: Dr. April Rose Panganiban)
  - Studies examining how mental models develop for robotic partners
    - Examined the impact of supportive communications in Loyal Wingman Scenario (published in JCEDM 2019)
    - Individual differences in trust in autonomous partners: Implications for Transparency (IEEE Transactions on Human-Machine Systems, 2020);
    - Trust in the Danger Zone: Individual Differences in Confidence in Robot Threat Assessments (submitted to Frontiers in Psychology)



### Joseph Lyons, PhD

Principal Research Psychologist, Collaborative Interfaces and Teaming

Air Force Research Laboratory 711th Human Performance Wing Airman Systems Directorate Collaborative Interfaces and Teaming Branch (711HPW/RHWC) Wright-Patterson AFB

> Phone: (937) 713-7015 E-mail: joseph.lyons.6@us.af.mil

## Any questions?