

Lessons learned from Medicare claims-based methods of studying digital health records

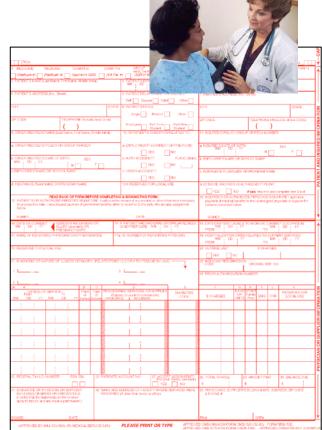
Julie Bynum, MD MPH

Associate Professor

The Dartmouth Institute for Health Policy & Clinical Practice
Geisel School of Medicine at Dartmouth

Medicare Administrative Data

- Medicare is the health insurance for all Americans over age 65
- Federal system so all data centralized
- Diagnosis required for every service delivered except for medications
- Complete capture of services because necessary for payment



Where does the information come from?

Physician Billing

Advantages

- Collection streamlined into care
- Large, diverse population
- Long term outcomes less expensive to collect
- Outcomes relevant to clinical care and policy

Historical Snapshot 2002 Alzheimer's Disease Health Services Research

- Debate: Less sick general older population?
- Limited to clinical registries & managed care
- Studies too small to fully adjust comorbidity

The Relationship Between a Dementia Diagnosis, Chronic Illness, Medicare Expenditures, and Hospital Use

Characteristics of Fee-for-Service Medicare Patients with and without a Claim for Dementia in 1999, 5% National cross-sectional sample				
	Dementia Patients (n=103,512)	No Dementia (n=1,135,383)		
Female, %	68	59		
Age, mean	81.9	74.9		
Age distribution, %				
65–74	18	54		
75–84	44	36		
85–94	34	10		
≥95	4	1		
Mortality, %	20	4		
Chronic conditions, mean	4.2	1.9		

P-values all <.001 dementia vs no dementia.

Association of Dementia & Hospitalization

Stratum by	All-Cause Hospitalization	
Number of Chronic Conditions	Adjusted OR Associated with Dementia (95% CI)*	
0	5.92 (5.60–6.27)	
1	3.36 (3.24–3.49)	
2	3.33 (3.22–3.44)	
3	3.38 (3.27–3.50)	
4	3.10 (2.97–3.23)	
5	2.87 (2.71-3.04)	

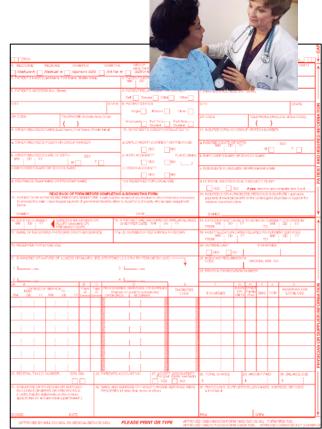
^{*}adjusted for age, sex, race, propensity to die

The Relationship Between a Dementia Diagnosis, Chronic Illness, Medicare Expenditures, and Hospital Use

Characteristics of Fee-for-Service Medicare Patients with and without a				
Claim for Dementia in 1999, 5% National cross-sectional sample				
	Dementia Patients	No Dementia		
	(n=103,512)	(n=1,135,383)		

Who "shows up" in Medicare claims with a disease?

65–74	18	54
75–84	44	36
85–94	34	10
≥95	4	1
Mortality, %	20	4
Chronic conditions, mean	4.24	1.85

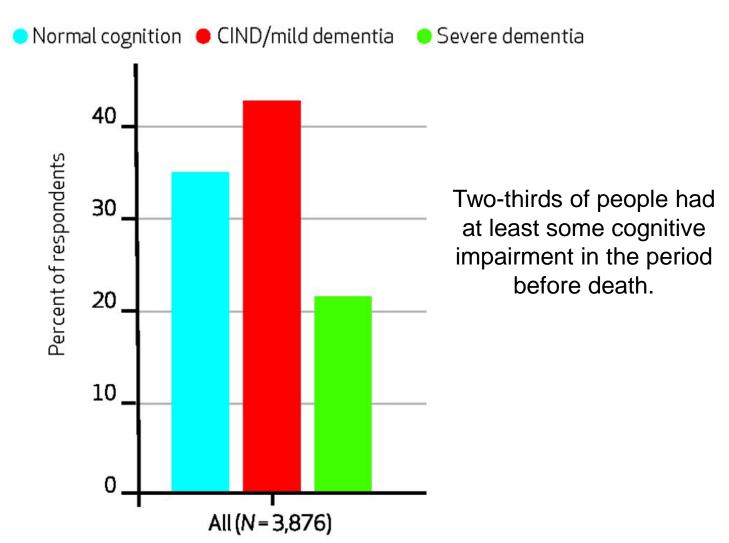


Where does the diagnostic info come from?

Physician Billing

Weaknesses

- Dependent on person presenting to medical system
- Accuracy of diagnosis
- Costs of start up to use
- Some populations missing (capitated insurance plans)


Improvements in using Medicare data in current studies

- Linkage to other data sources with objectively measured cognition
 - Health & Retirement Study N=20,000
 - Current Grant Nurse's Health Study linkage
 - N=20,000 approximately

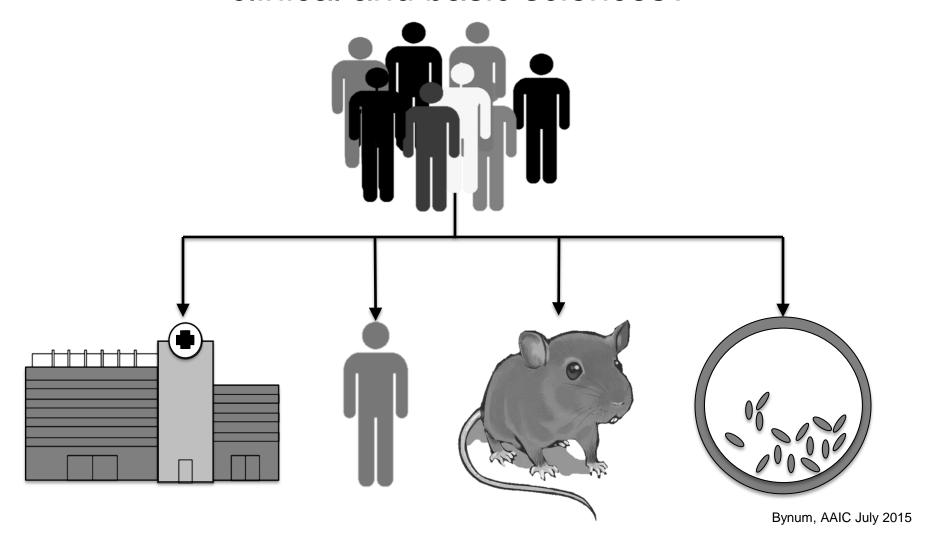
Advantage: Moderate to large sample, more precise cognitive status, outcomes measureable from billing data

Cognitive Functioning In 3,876 Health And Retirement Study Respondents With Linked Medicare Claims At Last Interview Before Dying In The Period 1998–2007.

Improvements in using Medicare data in current studies

- Linkage to other data sources
 - Health & Retirement Study N=3,876
 - Current Grant Nurse's Health Study linkage
 - N=20,000 approximately
- Use of the pharmaceutical use (Part D)
 - Current in-progress paper on use of anti-dementia drugs in clinical practice

Medicare Benes* with Dementia Diagnosis followed 1 Year Medication Use (2009)


N	433,559
Age	83.2
Sex	
Female	317,822 (73.3%)
Part D low-income subsidy	253,989 (58.6%)
Newly diagnosed in 2009	185,449 (42.8%)

^{*}enrolled in fee-for-service Medicare and Part D pharmacy benefit

Reverse Translational Research

Can population observations from billing data inform clinical and basic sciences?

A Case for Reverse Translation: Study of Population Drug Effects?

Example:

- For approval, drugs are tested individually
- Testing exposure pairs expensive & time intensive
- Individual drugs have overlapping effect profiles & little is known about combined use
- Current study at Dartmouth of fracture risk associated with interaction between drugs

What are the possibilities for dementia studies with full population medication exposure data?

Summary

- Billing data expands size and diversity (patient characteristics and geographic)
- Longer term outcomes relevant for families and policy with less expense
- Creatively linked data opportunity to find new, previously unobserved natural experiments