The clinical introduction of germline editing: what should we learn from earlier reproductive genetic technologies?

Prof dr Annelien Bredenoord
University Medical Center Utrecht, The Netherlands
Department of Medical Humanities

@albredenoord
Germline editing: fault line or continuity?
Meet Louise, the world’s first test-tube arrival.

SUPERBABE

Wide-eyed Louise Brown pictured in hospital 18 hours after she was born. Today she’s doing well. See Page Three.

LOUISE BROWN
40 YEARS OF IVF

SPECIAL 40TH ANNIVERSARY EDITION OF MY LIFE AS THE WORLD’S FIRST TEST-TUBE BABY
Prenatal diagnosis and screening programs
Mitochondrial replacement technologies

1. Patient's egg with abnormal mitochondria fertilised with partner's sperm

2. Patients' zygote with abnormal mitochondria

3. Patients' pronuclei removed from zygote and transferred to enucleated egg, which has normal mitochondria

4. Cleaving embryo with normal mitochondria and maternal and paternal genome can be transferred to the uterus

Donated egg fertilised
Normal mitochondria

Zygote
Normal mitochondria

Zygote enucleated
Normal mitochondria

Zygote reconstructed
Normal mitochondria

Bredenoord & Braude, BMJ 2010
Fault line: germline modification (?)

Human embryo day 3
Article 13 – Interventions on the human genome

An intervention seeking to modify the human genome may only be undertaken for preventive, diagnostic or therapeutic purposes and only if its aim is not to introduce any modification in the genome of any descendants.
Morally relevant similarities and differences

<table>
<thead>
<tr>
<th>PGD</th>
<th>MRT</th>
<th>Embryo modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Selection on multiple traits possible, but limited amount of embryos</td>
<td>• Presumed to alter only ‘non-essential’ DNA (mtDNA)</td>
<td>• Simultaneously modify several variants: slippery slope? (particularly in combination with IVG)</td>
</tr>
<tr>
<td>• Limited by the genetic material of providers gametes</td>
<td>• Modification of the mtDNA (but still germline modification)</td>
<td>• More risky</td>
</tr>
<tr>
<td>• Affected embryos are discarded</td>
<td>• Oocyte donor needed</td>
<td>• More in line with goals of medicine (?)</td>
</tr>
</tbody>
</table>
Slipslop in combination with IVG?

Logical Fallacies: The Slippery Slope

Slippery Slope Fallacy
if one thing happens or is allowed to happen, then that will lead to other steps and ultimately to a final outcome
Aim: to have a healthy, genetically related child

Article

The relative importance of genetic parenthood

Saskia Hendriks, Madelon van Wely, Thomas M. D’Hooghe, Andreas Meissner, Femke Mol, Karen Peeraer, Sjoerd Repping, Eline A.F. Dancet

Abstract

Research question

How much do patients with severe infertility and their gynaecologists value genetic parenthood relative to other key treatment characteristics?
Design

A discrete choice experiment included the following treatment characteristics: genetic parenthood, pregnancy rate, curing infertility, maternal health, child health and costs. The questionnaire was disseminated between 2015 and 2016 among Dutch and Belgian patients with severe infertility and their gynaecologists.

Results

The questionnaire was completed by 173 patients and 111 gynaecologists. When choosing between treatments that varied in safety, effectiveness and costs, the treatment's ability to lead to genetic parenthood did not affect the treatment preference of patients with severe infertility ($n=173$). Genetic parenthood affected the treatment preference of gynaecologists ($n=111$) less than all other treatment characteristics. Patients indicated that they would switch to a treatment that did not enable genetic parenthood in return for a child health risk reduction of 3.6%, a cost reduction of €3500, an ovarian hyperstimulation risk reduction of 4.6%, a maternal cancer risk reduction of 2.7% or a pregnancy rate increase of 18%. Gynaecologists made similar trade-offs.

Conclusions

While awaiting replication of this study in larger populations, these findings challenge the presumed dominant importance of genetic parenthood. This raises questions about whether donor gametes could be presented as a worthy alternative earlier in treatment trajectories and whether investments in novel treatments enabling genetic parenthood, like in-vitro gametogenesis, are proportional to their future clinical effect.
Regulation of preimplantation genetic diagnosis

The Dutch situation:
- Regulation PGD 2009
- Assessment done case by case by an interdisciplinary committee
- Local (all applications) and national committee (only new indications)
- Set of criteria to assess acceptability of PGD:
 1. Seriousness and nature of the disease (high risk of serious harm)
 2. Treatment options
 3. Additional medical criteria
 4. Psychological and moral factors
U.K. Parliament approves controversial three-parent mitochondrial gene therapy
World’s first baby born with controversial new ‘three-parent’ technique

‘Hopefully, this will tame the more zealous critics ... and we will witness soon a birth of the first mitochondrial donation baby in the UK’
Mitochondrial Replacement Techniques: Remaining Ethical Challenges

Annelien L. Bredenoord1,* and John B. Appleby2
1Julius Center, Department of Medical Humanities, University Medical Center Utrecht, Utrecht, the Netherlands
2Lancaster Medical School, Lancaster University, Lancaster, UK
*Correspondence: a.l.bredenoord@umcutrecht.nl
http://dx.doi.org/10.1016/j.stem.2017.08.009

Recent developments in the field of mitochondrial replacement technique (MRT) research and clinical practice have raised ethical concerns worldwide. We argue that the future use of MRTs requires a concerted effort among the global research and clinical community to implement and enforce responsible innovation and governance.
After the fact—the case of CRISPR babies

Martin Sand1 · Annelien L. Bredenoord2 · Karin R. Jongsma2

Received: 28 December 2018 / Revised: 6 June 2019 / Accepted: 11 June 2019
© European Society of Human Genetics 2019

Abstract
The world has been startled by the irresponsible experiment of He Jiankui, who used CRISPR to genetically modify human embryos. In this viewpoint, we explore the phenomenon of moral luck in medicine and its bearing on the limits of simple judgements of the kind “everything that ends well is well” or “someone broke the rules, and is therefore blameworthy”. The risks involved in scientific and medical experiments are often brushed aside, when they turn out well. The clinical application of CRISPR in the human germline is presently too risky to be used without more preclinical research and unacceptable without broader societal support, which justifies the call for a moratorium by the scientific community. However, such policies do not determine how to assess cases, where someone was willing to take such risks beyond all rules, guidelines and regulation and succeeds. The policies including the proposed moratorium are as unanimous about the undesirability of current applications of clinical germline editing as they are about the potential importance of this research. What if this potential is achieved by breaking the rules? The paradox of moral luck impinges on this debate. In our analysis, we rebut simplified judgments and advocate a more balanced view on the relation between moral responsibility and the societal consequences of medicine.
Conclusions: what should we learn from earlier reproductive genetic technologies?

- Germline editing as a next step in line, not a complete fault line
- Many similarities in the ethics debate regarding reproductive genetic technologies
- Germline modification in combination with IVG: slippery slope?
- Genetic parenthood is not a necessary condition for happy parenthood
- Regulatory framework for PGD as an example
- Countries with prudent policies towards MRT are not the countries that pioneered
- First applications of MRT are example how NOT to innovate
- No slippery slope in embryo legislation: countries with most permissive policies are not the countries where MRT and germline editing is pioneered
- International guidelines for clinical translation of reproductive genetic technologies needed (similar to WMA Declaration of Helsinki)
Thank you!

@ALBredenoord