Development of AGN 151587 (EDIT-101), a gene editing approach to restore vision in Leber Congenital Amaurosis Type 10

Vic Myer, Ph.D.
Chief Technology Officer
Forward Looking Statements

This presentation contains forward-looking statements within the meaning of the “safe harbor” provisions of The Private Securities Litigation Reform Act of 1995. All statements, other than statements of historical facts, contained in this presentation, including statements regarding the Company’s strategy, future operations, future financial position, future revenue, projected costs, prospects, plans, and objectives of management, are forward-looking statements. The words “anticipate,” “believe,” “continue,” “could,” “estimate,” “expect,” “intend,” “may,” “plan,” “potential,” “predict,” “project,” “target,” “should,” “would,” and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. The Company may not actually achieve the plans, intentions, or expectations disclosed in these forward-looking statements, and you should not place undue reliance on these forward-looking statements. Actual results or events could differ materially from the plans, intentions and expectations disclosed in these forward-looking statements as a result of various factors, including: uncertainties inherent in the initiation and completion of preclinical studies and clinical trials and clinical development of the Company’s product candidates; whether interim results from a clinical trial will be predictive of the final results of the trial or the results of future trials; expectations for regulatory approvals to conduct trials or to market products; availability of funding sufficient for the Company’s foreseeable and unforeseeable operating expenses and capital expenditure requirements; and other factors discussed in the “Risk Factors” section of the Company’s most recent Quarterly Report on Form 10-Q, which is on file with the Securities and Exchange Commission, and in other filings that the Company may make with the Securities and Exchange Commission in the future.

In addition, the forward-looking statements included in this presentation represent the Company’s views as of the date of this presentation. The Company anticipates that subsequent events and developments will cause its views to change. However, while the Company may elect to update these forward-looking statements at some point in the future, it specifically disclaims any obligation to do so. These forward-looking statements should not be relied upon as representing the Company’s views as of any date subsequent to the date of this presentation.

VM is an employee and shareholder of Editas Medicine, Inc.
EDITING INSIDE THE BODY
IN VIVO CRISPR MEDICINES

OCULAR DISEASES

Leber congenital amaurosis 10*
Usher syndrome 2A
Retinitis pigmentosa
Ocular HSV

CANCER

Autologous T cell medicines**
Allogeneic cell medicines

BLOOD DISEASES

Sickle cell disease
Beta-thalassemia

EDITING OUTSIDE THE BODY
ENGINEERED CELL MEDICINES

EARLY DISCOVERY

Liver – AATD
Muscle – DMD
Lung – CF

*EDIT-101 (AGN-151587) partnered with Allergan; **Partnered with Celgene; LCA10: Leber congenital amaurosis 10; HSV: herpes simplex virus; CF: cystic fibrosis; DMD: Duchenne muscular dystrophy; AATD: alpha-1 antitrypsin deficiency; AAV: adeno-associated virus

© 2018 Editas Medicine
Considerations for an in vivo Editing Experimental Medicine

<table>
<thead>
<tr>
<th>Category</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease Biology</td>
<td>Unmet need, editing strategy, differentiation, and therapeutic editing target</td>
</tr>
<tr>
<td>Identify Editing Moiety in Cells</td>
<td>Guide RNA and protein selection</td>
</tr>
<tr>
<td></td>
<td>On-target and off-target editing in relevant tissue</td>
</tr>
<tr>
<td>In Vivo Pharmacology</td>
<td>Delivery, dose-response, animal models, and human dose prediction</td>
</tr>
<tr>
<td>Safety and Tolerability</td>
<td>IND-enabling studies, translational biomarkers, immunogenicity</td>
</tr>
<tr>
<td>Clinical Development</td>
<td>Endpoints, biomarkers, doses, study design</td>
</tr>
</tbody>
</table>
Leber Congenital Amaurosis 10

WT Photoreceptor

LCA10 Photoreceptor

Cone cell
Rod cell

Retina
Fovea
Blind spot

Outer segment
Inner segment

Discs
Connecting cilium

Protein trafficking

CEP290

Degenerated discs
No protein trafficking
Gene Editing to Repair *CEP290* Splicing Defect

DNA

- *CEP290* with IVS26 mutation
- *CEP290* corrected with EDIT-101

mRNA

- Exon 26
- Exon 27

Protein

- p.Cys998X
- Prematurely truncated and non-functional
- Full length, functional *CEP290*
Editing Corrects CEP290 Splicing Thereby Restoring mRNA and Protein Expression

CEP290 mRNA Expression

CEP290 Protein Expression

From LCA10 patient fibroblasts
Challenges with PCR-NGS Assays When Making Multiple Edits

3 PCR assays needed to measure editing at CEP290 intron 26 locus

Even with rigorous standards it is difficult to cross compare 3 assays
Editing Causes Inversions, Deletions, and Indels

Targeted Deletions and Inversions Correct Splicing

Correct Splicing as Determined by GFP Expression

AGN-151587: gRNAs Plus SaCas9 in AAV5

AAV5

U6 323 U6 64 hGRK1

Kozak-ATG SV40 SD/SA Sa Cas9

NLS

pA

Cornea Retina Vitreous

Lens Optic Nerve

Subretinal Injection
Comprehensive Specificity Assessment

Discovery
- Predict where an enzyme can cut
 In silico modeling
- Find where an enzyme cuts naked DNA
 Digenome-Seq
- Find where an enzyme cuts DNA in context of a cell
 GUIDE-Seq

Verification
- Measures effect of enzyme activity on “discovered” sites
 Targeted Sequencing in relevant cells

Off-Target
- *Risk assessment and mitigation as needed*
Digencode-Seq Assay

CAS9 + Guide + genomic DNA → 16 hours → WGS Align & analyze
Identify overabundant start sites

Count of unique cut sites
Includes on-target site

EMX1 (SpCAS9)	g64 (SaCAS9)	g323 (SaCAS9)	no RNP
10 nM | 100 nM | 1,000 nM | 10 nM | 100 nM | 1,000 nM | 10 nM | 100 nM | 1,000 nM | -
3 | 21 | 272 | 1 | 1 | 1 | 1 | 1 | 2 | 0

CEP290 Guide 323 on-target example

on:off >100x window
on:off ~100x window
Comprehensive Specificity Assessment

Discovery

- Predict where an enzyme can cut *In silico modeling*
- Find where an enzyme cuts naked DNA *Digenome-Seq*
- Find where an enzyme cuts DNA in context of a cell *GUIDE-Seq*

Verification

- Measures effect of enzyme activity on “discovered” sites
 - *Targeted Sequencing in relevant cells*
- 1 sites
- 0 sites
- 144 sites

Off-Target

- Risk assessment and mitigation as needed
Human Retinal Explant Model

1. **Human Eyes 3-5 hrs Post-Mortem**
 - Remove Neural Retina
 - 3 mm punches

 - Plate 3 mm punches with photoreceptor side down

2. **24-well format**
 - Harvest 28 days post-transduction

 - Histology
 - UDiTaS to measure Editing
 - Specificity verification panel

Human retinal explant model [2]

AAV5-GRK1-GFP (5e11 vg)

28 Day Post Transduction

EDIT-101 (5e11 vg)

28 Day Post Transduction

% Editing

Untreated

EDIT-101

INL

ONL

Inversions

Deletions

AAV insertions

Indels

© 2018 Editas Medicine
Specificity assessment, verification phase using targeted PCR with NGS readout

<table>
<thead>
<tr>
<th>Retinal Explant #1</th>
<th>Retinal Explant #2</th>
<th>ARPE-19</th>
<th>U-2 OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>147: 2 On-target, 144 In Silico, 1 Digenome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>128</td>
<td>122</td>
<td>126</td>
<td>127</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Candidate off-target sites
Assay Design (3 sites in repetitive regions)
Assay QC (142 in at least 2 samples)
Below LLoD <0.1% (no editing)
Above LLoD, no difference vs. to control
Verified editing at sites

Both on-target sites identified and **no** off-target candidate sites verified
Considerations for an in vivo editing experimental medicine

<table>
<thead>
<tr>
<th>Category</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease Biology</td>
<td>- Unmet need, editing strategy, differentiation, and therapeutic editing target</td>
</tr>
<tr>
<td>Identify Editing Moiety in Cells</td>
<td>- Guide RNA and protein selection</td>
</tr>
<tr>
<td></td>
<td>- On-target and off-target editing in relevant tissue</td>
</tr>
<tr>
<td>In Vivo Pharmacology</td>
<td>- Delivery, dose-response, animal models, and human dose prediction</td>
</tr>
<tr>
<td>Safety and Tolerability</td>
<td>- IND-enabling studies, translational biomarkers, immunogenicity</td>
</tr>
<tr>
<td>Clinical Development</td>
<td>- Endpoints, biomarkers, doses, study design</td>
</tr>
</tbody>
</table>
Initiated LCA10 Phase 1/2 Clinical Trial

LCA10 PHASE 1/2 TRIAL

DESIGN
Open-label, dose escalation study to evaluate safety, tolerability, and efficacy

PATIENTS
~18 patients with IVS26 mutation*

COMPARATOR
Patient’s own baseline value for each efficacy measure

FOLLOW-UP
Core measurements every 3 months for 1st year

*Intervening sequence 26 in CEP290 gene containing the c.2991+1655A>G mutation
Somatic cell gene editing has the potential to transform the lives of patients living with serious disease; Editas Medicine is only working on somatic cell gene editing.

Germline gene editing in human clinical settings is currently prohibited across much of the world.

In addition to scientific concerns, robust ethical and legal frameworks are not yet developed for germline gene editing in human settings.

As this topic concerns all of humanity, it is important that we all engage and listen to diverse stakeholders, including members of the patient, caregiver, regulatory, biotechnology, legal, academic, ethical, and faith communities to determine if, and under which conditions, the status quo should change.

To allow this process to develop in the years ahead, we support a global moratorium on clinical applications of human germline editing.
Acknowledgements

- Allergan
- Massachusetts Eye and Ear Infirmary
 - Eric Pierce, Nachi Pendse, Qin Liu
- University of Florida, Dept of Ophthalmology
 - Shannon Boye, Sanford Boye, Tyler McCullough, Russell Melen
- University of Alabama at Birmingham, Dept of Ophthalmology and Visual Sciences
 - Paul A. Gamlin, C. Douglas Witherspoon
- Scientists and Team members at Editas Medicine, Inc.