Gene therapy approaches for Parkinson’s disease related lysosomal disorders

Asa Abeliovich, MD PhD
Prevail Therapeutics
Growing gene therapy landscape

- **Safety:** AAV-based therapeutics have been dosed safely in hundreds of patients and do not integrate into the host genome
- **Transformative efficacy:**
 - Spark’s Luxturna first gene therapy approved in the United States
 - Avexis’ AAV9-based therapy showed transformative efficacy in babies with SMA

SMA Gene Therapy Promising in Early Results
— 12 children with spinal muscular atrophy hit motor milestones in phase I trial of AVXS-101

Gene Therapy for Rare Form of Blindness Wins US Approval
Gene therapy’s new hope: A neuron-targeting virus is saving infant lives

A Cure for Hemophilia within Reach
Parkinson’s disease: the unmet need

- Parkinson’s is the most common progressive motor disease of aging
- Many Parkinson’s patients initially experience a “honeymoon period” with good response of their motor symptoms to symptomatic dopaminergic therapy, but this response wanes
- Genetically-defined Parkinson’s patient subpopulations (such as with glucocerebrosidase [GBA1] mutations) progress rapidly and with a more aggressive course
- **No existing therapies modify or halt the progression of Parkinson’s disease**

Source: eMedicine, Michael J. Fox Foundation, Timpka et al. Movement Disorders – Clinical Practice (2016)
PD Pathology: Lewy Body Inclusions

Braak and Del Tradici, 2009
Key human genetics insight: lysosome dysfunction underlies age-associated neurodegeneration in Parkinson’s disease

- Human genetic studies, including genome wide association and deep sequencing, have identified causative genes for age-related neurodegenerative disorders such as Parkinson’s disease.
- Parkinson’s disease is now known to be strongly impacted by over 40 genes.
- Many of these PD-associated genes play a direct role in lysosome function and trafficking, such as GBA1 which encodes glucocerebrosidase (Gcase).
Glucocerebrosidase (Gcase) deficiency has long been known to lead to the accumulation of toxic glycolipids in Gaucher disease, which is a multi-organ disease that can include CNS symptoms.

Recent human genetics breakthroughs demonstrate that relatively modest reduction (~20%) in Gcase can cause age-associated Parkinson’s disease.

Gcase substrate accumulation induces α-synuclein pathology and neuronal loss, which typifies the Parkinson’s disease brain.

Gcase deficiency leads to accumulation of toxic glycolipids such as glucosylsphingosine. These glycolipids induce accumulation and aggregation of α-synuclein, which further impairs lysosomal trafficking.

Sidransky, Molecular Genetics and Metabolism 2004
Taguchi et al., J. Neurosci 2017
Lysosomes play an essential role in degradation and recycling of macromolecules

- Lysosomes are considered the cell’s “recycling center” and recycle proteins, lipids, sugars, aggregates, etc.
- Lysosomes play an especially critical role in long-lived cells, such as CNS neurons, and in aging cells
- Deficiencies in many lysosome enzymes can induce accumulation of toxic materials, leading to severe childhood syndromes termed lysosomal storage disorders (LSDs)

Lysosomes degrade components from the cell cytoplasm (through autophagic trafficking) or from membranes or the cell exterior (through endosomal trafficking)
Gcase insufficiency
Contributes to PD-GBA and “sporadic” PD

- Reduced blood Gcase activity in PD-GBA and sporadic PD patients
- Dose effect: homozygotes/compound heterozygotes < heterozygotes < non-carriers
- Mildest mutations (E326K) with ~20% reduction
- “Modifiable therapeutic target”

In CSF, reduced Gcase activity (Balducci et al Mov Disord 2007; Parnetti et al Mov Disord 2014)
Cell and gene therapies: lentivirus ex vivo

Lentiviral Gene Therapy Using Cellular Promoters Cures Type 1 Gaucher Disease in Mice

Maria Dahl1,2, Alexander Doyle1,2, Karin Olsson1,2, Jan-Eric Månsson2, André RA Marques3, Mina Mirzaian4, Johannes M Aerts5, Mats Ehinger6, Michael Rothe6, Ute Modlich6, Axel Schambach6 and Stefan Karlsson1,2

1Department of Pediatrics, Karolinska University Hospital, Stockholm, Sweden\
2Department of Medicine, Karolinska Institute, Stockholm, Sweden\
3Department of Genetics, University of British Columbia, Vancouver, Canada\
4Department of Molecular Oncology, University Hospital of Munster, Munster, Germany\
5Department of Chemistry, University of Pennsylvania, Philadelphia, USA\
6Department of Biomedical Engineering, University of California, San Francisco, USA
Intrahippocampal injection of AAV1-GBA1 reduced substrate accumulation in a Gaucher disease genetic mouse model

AAV1-GBA1 reversed deficits in Novel Object Recognition (NOR) task after injection at 4 or 12 months, assayed at 6 or 14 months respectively

Sardi et al., PNAS 2013

Sardi et al., PNAS 2013
Intrastriatal injection of AAV1-GBA1 leads to enzyme accumulation and a reduction in α-synuclein accumulation

These α-synuclein transgenic mice have ~20-30% reduction in Gcase activity which is rescued by treatment

GBA1 gene therapy in a mouse model of Parkinson’s disease demonstrated reduced α-synuclein accumulation
GBA1 gene therapy in a second mouse model of Parkinson’s disease rescues dopamine neuron loss

- AAV5-GBA1 vector injected into the substantia nigra rescues dopamine neuron loss in an AAV-based mutant α-synuclein animal model of Parkinson’s disease

Rocha et al., Neuro of Disease 2015
GBA1 gene therapy in a third mouse model of Parkinson’s disease rescued cognitive dysfunction

- Variant AAV9-GBA1 delivered intravenously leads to rescue of α-synuclein inclusion phenotype in a different α-synuclein transgenic model
- Also rescues novel object recognition cognitive task

Source: Morabito et al., 2017
Thank you!