Leveraging Behavioral Interventions to Achieve Appropriate Antibiotic Prescribing

National Academies: Combating Antimicrobial Resistance

June 20, 2017

Jeffrey A. Linder, MD, MPH, FACP

Professor of Medicine and Chief
Division of General Internal Medicine and Geriatrics
Northwestern University Feinberg School of Medicine

jlinder@northwestern.edu @jeffreylinder
Disclosures

• **Stock:** Amgen, Biogen, and Eli Lilly

• **Former grant funding:** Astellas Pharma, Inc. and Clintrex/Astra Zeneca

• **Honoraria:** SHEA (supported by Merck)
Diagnostics are Not the Answer
Outline

• Antibiotic prescribing

• Behavioral science

• BEARI (Behavioral Economics/Acute Respiratory Infection) Trial
Background: Acute Respiratory Infections

• 10% of all ambulatory visits
• 44% of antibiotics

• Inappropriate antibiotic prescribing
 – Costs
 – Antibiotic-resistant bacteria
 – Changing the microbiome
 – Adverse drug events
Antibiotic Prescribing in the US

Figure. Antibiotic Prescribing for Acute Bronchitis in the United States by Site of Care, 1996-2010

- N = 3153 representing 31 million visits

Barnett and Linder. JAMA 2014
Antibiotic Prescribing in the US

- Adults with sore throat, 1997-2010
- N = 8191 representing 92 million visits

Antibiotic Prescribing

• 506 antibiotic prescriptions per 1000 people
 • 30% unnecessary
 • 50% of ARI prescribing unnecessary
• **US**: 833 per 1000 people
• **Sweden**: 388 → 157 per 1000 people
EPIC Study (i.e. CDC searching for bugs)

A Specific Pathogens Detected

- Viral pathogen only (22%)
- Viral–viral co-detection (2%)
- Bacterial–viral co-detection (3%)
- Bacterial pathogen only (11%)
- Fungal or mycobacterial detection (1%)

Patients with a Positive Result (%)

- Human rhinovirus: 194
- Influenza A or B: 132
- S. pneumoniae: 115
- Human metapneumovirus: 88
- Respiratory syncytial virus: 68
- Parainfluenza virus: 67
- Coronavirus: 53
- Mycoplasma pneumoniae: 43
- S. aureus: 37
- Adenovirus: 32
- Legionella pneumophila: 32
- Enterobacteriaceae: 31
- Other: 74

Pathogen Detected

Changing Behavior

• Limited Success of prior interventions

• *Implicit model*: clinicians reflective, rational, and deliberate
 – “Educate” and “remind” interventions

• *Behavioral model*: decisions fast, automatic, influenced by emotion and social factors
 – Cognitive bias
 – Appeal to clinician self-image
 – Consider social motivation
Imbalance in Factors Related to Antibiotic Prescribing

Factors Driving Antibiotic Prescribing: Immediate and Emotionally Salient

- Belief that a patient wants antibiotics
- Perception that it is easier and quicker to prescribe antibiotics than explain why they are unnecessary
- Habit
- Worry about serious complications and “just to be safe” mentality

Factors Deterring Antibiotic Prescribing: More Remote and Less Emotionally Salient

- Risks of adverse reactions and drug interactions
- Recognizing the need for antibiotic stewardship
- Desire to deter low-value care and decrease unnecessary health care spending
- Prefer to follow guidelines
Antibiotic prescriptions over the course of a day

- **Average Prescribing Rate**
- **All Acute Respiratory Infection Appointments**
- **Acute Respiratory Infection Appointments Never Indicated for Antibiotics**

Source: athenaResearch
Nudge

Improving Decisions about Health, Wealth, and Happiness

Richard H. Thaler and Cass R. Sunstein

...with a new afterword

"One of the few books I've read recently that fundamentally changes the way I think about the world." — Steven Levitt, coauthor of Freakonomics

Northwestern Medicine®
Feinberg School of Medicine
Cognitive Systems

1. Automatic

2. Reflective
Original Investigation

Effect of Behavioral Interventions on Inappropriate Antibiotic Prescribing Among Primary Care Practices: A Randomized Clinical Trial

Daniella Meeker, PhD; Jeffrey A. Linder, MD, MPH; Craig R. Fox, PhD; Mark W. Friedberg, MD, MPP; Stephen D. Persell, MD, MPH; Noah J. Goldstein, PhD; Tara K. Knight, PhD; Joel W. Hay, PhD; Jason N. Doctor, PhD

IMPORTANCE Interventions based on behavioral science might reduce inappropriate antibiotic prescribing.

Editorial page 558
Supplemental content at jama.com
CDS and HIT often Disappoint

• Electronic health records with clinical decision support
 – Touted as a solution to problems of medical safety, cost, and quality

• Many EHR/CDS implementations
 – Do not achieve expected improvements
 – Implicitly assume clinicians follow a standard economic/behavioral model
Specific Aim

- To evaluate 3 behavioral interventions to reduce inappropriate antibiotic prescribing for acute respiratory infections
 - 3 health systems using 3 different EHRs
Interventions

1. Suggested Alternatives
2. Accountable Justification
3. Peer Comparison
Intervention 1: Suggested Alternatives

Allergies
- ACE Inhibitors - Angioedema, Rash
- Morphine - Dystonia

Add New Medication
- **Medication:** Amoxicillin
- **Route:** [Search] [Favorites] [Cancel]

<table>
<thead>
<tr>
<th>Type</th>
<th>Retail Copay</th>
<th>Medication</th>
<th>Route</th>
<th>Restrictions</th>
<th>Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rx-Gen</td>
<td>Unknown</td>
<td>AMOXICILLIN 2000 MG PO X1</td>
<td>PO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rx-Gen</td>
<td>Unknown</td>
<td>AMOXICILLIN 250 MG PO TID 7 day(s)</td>
<td>PO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMOXICILLIN 500MG, 1 PO TID</td>
<td>PO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMOXICILLIN EXTENDED RELEASE</td>
<td>PO</td>
<td></td>
<td>Alternatives</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMOXICILLIN/CLAV. SUSP 400 MG/57 MG (5 ML)</td>
<td>PO</td>
<td></td>
<td>Alternatives</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMOXICILLIN/CLAV ACID 250/125 (AMOX/CLAV ACID ...</td>
<td>PO</td>
<td></td>
<td>Alternatives</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMOXICILLIN/CLAV ACID 500/125 (AMOX/CLAV ACID ...</td>
<td>PO</td>
<td></td>
<td>Alternatives</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMOXICILLIN/CLAV ACID 875/125</td>
<td>PO</td>
<td></td>
<td>Alternatives</td>
</tr>
</tbody>
</table>
Intervention 1: Suggested Alternatives

Are you prescribing this antibiotic for an acute respiratory infection (ARI)?

Yes No Cancel
Intervention 1: Suggested Alternatives

Please select Principal ARI diagnosis:
- Non-specific upper respiratory infection
- Sinusitis
- Pharyngitis
- Acute bronchitis
- Otitis media
- Influenza
- Pneumonia
- Other [blank field]

[OK] [Cancel]
Intervention 1: Suggested Alternatives

Warning
You are ordering: AMOXICILLIN

Alert Message:
Antibiotics are not generally indicated for non-specific upper respiratory infections. Please consider the following alternative prescriptions, treatments, and materials to help your patient.

Alternatives

Over-the-counter medications

Decongestants
- Oxymetazoline HCL (0.05 % SPRAY)
 2 SPRAY (0.05 % SPRAY) NAS BID or PRN but no more frequently than every 6 hours. Do not use more than 3 days. Dispense: 1 Bottle(s) Refills: 0
- Pseudoephedrine (30 MG TABLET)
 60 MG (30 MG TABLET Take 2) PO Q6H PRN as needed for nasal congestion. Dispense: 50 Tablet(s) Refills: 0

Antihistamines
- Diphenhydramine ORAL (25 MG TABLET)
 25 MG (25 MG TABLET Take 1) PO Q6H PRN not to exceed 6 doses in 24 hours. Dispense: 24 Tablet(s) Refills: 0
- Loratadine (10 MG TABLET)
 10 MG (10 MG TABLET Take 1) PO QD PRN Dispense: 30 Tablet(s) Refills: 0
Intervention 1: Suggested Alternatives

<table>
<thead>
<tr>
<th>Medication</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cough suppressants and expectorants</td>
<td></td>
</tr>
<tr>
<td>Benzonatate (100 MG CAPSULE)</td>
<td>100 MG (100 MG CAPSULE Take 1 PO Q4H PRN for cough. Do not take more than 6 capsules in 1 day. Dispense: 30 Capsule(s) Refills: 0</td>
</tr>
<tr>
<td>Guaifenesin AC (100-10MG/5 LIQUID)</td>
<td>5 ML (100-10MG/5 LIQUID) PO Q4H PRN for cough Dispense: 180 ML(s) Refills: 0</td>
</tr>
<tr>
<td>Bronchodilators</td>
<td></td>
</tr>
<tr>
<td>Albuterol INHALER HFA (90 MCG HFA AER AD)</td>
<td>2 PUFF (90 MCG HFA AER AD) INH Q6H PRN for cough Dispense: 1 Inhaler(s) Refills: 0</td>
</tr>
</tbody>
</table>

"Excuse from work" Patient Letter.

- Select patient's Days Off work: 4
- Save As Note
- Preview or Print

Print patient educational materials.

- Preview or Print

- If you still want to prescribe an antibiotic, please check the box

Northwestern Medicine
Feinberg School of Medicine
Intervention 2: Accountable Justification

Patient has asthma.
Interventions 1 and 2: Combined

- **Patient insists on antibiotics.**
Intervention 3: Peer Comparison

“You are a Top Performer”
You are in the top 10% of clinicians. You wrote 0 prescriptions out of 21 acute respiratory infection cases that did not warrant antibiotics.

“You are not a Top Performer”
Your inappropriate antibiotic prescribing rate is 15%. Top performers' rate is 0%. You wrote 3 prescriptions out of 20 acute respiratory infection cases that did not warrant antibiotics.
Interventions: Summary

EHR-based Nudges

- Suggested Alternatives

Social Motivation

- Accountable Justification
- Peer Comparison
Methods: Practices and Randomization

47 Primary Care Practices

3 Health Systems, 3 EHRs
Los Angeles: 25
Boston: 22

Randomization: Blocked by Region

18 Month Follow-Up
December 2012 – April 2014
Methods: Enrollment

- **Invited:** 355 clinicians

- **Enrolled:** 248 (70%)
 - Consent
 - Education
 - Practice-specific orientation to intervention
 - Honorarium
Methods: Primary Outcome

• **Antibiotic prescribing for non-antibiotic-appropriate diagnoses**
 – Non-specific upper respiratory infections
 – Acute bronchitis
 – Influenza

• **Excluded:** chronic lung disease, concomitant infection, immunosuppression

• **Data Sources:** EHR and billing data
Methods: Analysis

• *Piecewise hierarchical model*
 – Clinician and practice-level clustering
 – 18-month baseline period
 – 18-month intervention
 – Modeled differences in the trajectory of antibiotic prescribing starting at month zero
 – Evaluated interactions
Main Results: Suggested Alternatives

-5% p = 0.66
Main Results: Accountable Justification

-7% \(p < .001 \)
Main Results: Peer Comparison

-5% p = < .001
Persistence of Effects
Limitations

• Limited to enrollees
• Dependent on EHR and billing data

Strengths

• Randomized controlled trial
• Large size
• 3 different EHRs
Acknowledgements

Funded by the National Institutes of Health (RC4AG039115)

University of Southern California
 Jason N. Doctor, PhD
 Dana Goldman, PhD
 Joel Hay, PhD
 Richard Chesler
 Tara Knight

University of California, Los Angeles
 Craig R. Fox, PhD
 Noah Goldstein, PhD

RAND
 Mark Friedberg, MD, MPP
 Daniella Meeker, PhD
 Chad Pino

Partners HealthCare, BWH, MGH
 Jeffrey Linder, MD, MPH
 Yelena Kleyner
 Harry Reyes Nieva
 Chelsea Bonfiglio
 Dwan Pineros

Northwestern University
 Stephen Persell, MD, MPH
 Elisha Friesema

Cope Health Solutions
 Alan Rothfeld, MD
 Charlene Chen
 Gloria Rodriguez
 Auroop Roy
 Hannah Valino
Summary: Behavioral Interventions

• *Doctors are people too*
• *Doctoring is an emotional, social activity*
• *Diagnostics are not the answer*
• *Behavioral principles*
 – Decision fatigue
 – (Pre-commitment)
 – Accountable justifications
 – Peer comparison
Thank You

Questions? Conversation?

jlinder@partners.org @jeffreylinder