National Academy of Sciences
Use of Elastomeric Respirators in Health Care

Brian Heimbuch, MS
March 22, 2018
Research Objectives

Ensure Adequate Supply of Respiratory Protection Devices (RPDs) During an Influenza Pandemic

Reprocessing Studies of Half-Mask Elastomeric Respirators (HMERs) and Powered Air-Purifying Respirators (PAPRs)

Develop a Reusable N95 for the Health Care Industry: Elastomeric N95 Surgical (EN95-S)
Project Funding and Support

Food and Drug Administration – Medical Countermeasures Initiative Regulatory Science Extramural Research Program

Contract # HHSF223201400158C

Biomedical Advanced Research and Development Authority

Contract # HHSO100201700032C
Reusable Respirator Reprocessing Studies

Half-Mask Elastomeric Respirators (HMERs)

- 3M 6200
- 3M 7502
- North 7700
- Scott XCEL
- Sperian Survivair

Powered Air-Purifying Respirators (PAPRs)

- 3M Breathe Easy
- 3M AirMate
- 3M PAPR Hoods
- Syntech MAXAIR
Reusable Respirator Reprocessing Studies

Two Types of Reprocessing:

Manual Reprocessing

- Clean by wiping with a sterile sponge in a warm neutral detergent solution
- Disinfect by soaking in a 0.1% bleach solution for two minutes
- Wipe filter cartridges (only 3M models) and PAPR motor/battery with Saniwipe disinfectant wipe
- Two conditions evaluated: cleaning only and cleaning/disinfection

Automated Reprocessing

- Clean and disinfect using a washer-disinfector with neutral detergent solution
- Temperature reduced to 55 °C per respirator manufacturer-defined limits
- For HMERs, no filters treated; for PAPRs, only hoods and breathing tubes treated
Reusable Respirator Reprocessing Studies

Disinfection Studies

- Multiple surfaces inoculated with influenza and synthetic skin oil
- Inoculated areas swabbed after reprocessing to recover viable virus remaining on surfaces
- Virus quantified using median tissue culture infectious dose (TCID\textsubscript{50}) assay
Reusable Respirator Reprocessing Studies

Disinfection Results

- Manual reprocessing:
 - Across 41 HMER and PAPR surfaces tested, mean log reduction in viable influenza was 4.54 ± 0.97 log TCID₅₀
 - Viable virus was recovered from only three cleaned-only surfaces (two fabric straps and a corrugated PAPR breathing tube) and one cleaned and disinfected surface (fabric strap)

- Automated reprocessing:
 - Across 30 HMER and PAPR surfaces tested, mean log reduction in viable influenza was 4.52 ± 0.74 log TCID₅₀
 - No viable virus was recovered from any surface
Reusable Respirator Reprocessing Studies

Durability Studies

- Reusable respirators treated with 150 cycles of manual reprocessing and 100 cycles of automated reprocessing
- HMERs evaluated for fit, inhalation resistance, exhalation resistance, exhalation valve leakage
- PAPRs evaluated for total inward leakage and air flow velocity
 - PAPR hood also evaluated for changes in fluid resistance, material strength, seam strength, and visor transparency using standard test methods

<table>
<thead>
<tr>
<th>Property</th>
<th>Standard Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid resistance</td>
<td>AATCC 127</td>
</tr>
<tr>
<td>Material strength</td>
<td>ASTM D6797</td>
</tr>
<tr>
<td>Seam strength</td>
<td>ASTM D1683</td>
</tr>
<tr>
<td>Optical transparency</td>
<td>ASTM D1003</td>
</tr>
</tbody>
</table>
Reusable Respirator Reprocessing Studies

Durability Results

- **Manual reprocessing (150 cycles):**
 - All HMERs demonstrated adequate fit, inhalation resistance, exhalation resistance, and exhalation valve leakage
 - No significant difference in PAPR total inward leakage and air flow
 - No significant difference in PAPR material properties tested

- **Automated reprocessing (100 cycles):**
 - All HMERs demonstrated adequate fit, except for the Scott XCEL (failed after 50 cycles)
 - All HMERs demonstrated adequate inhalation resistance, exhalation resistance, and exhalation valve leakage
 - No significant difference in PAPR total inward leakage and air flow (blower units not treated)
 - No significant difference in PAPR material properties tested, except for visor transparency
Conclusions

• **Manual reprocessing**
 - The data indicate HMERs and PAPRs can be effectively decontaminated using the manual reprocessing protocol used in this study up to 150 cycles
 - Porous or hard-to-reach surfaces can pose a challenge for these methods
 - Reprocessing instructions are inconsistent across respirator models/manufacturers in level of detail and do not account for biocontainment concerns
 - Manual reprocessing is time consuming and is dependent on the reprocessor’s attention to detail

• **Automated reprocessing**
 - The data indicate most HMERs and PAPR hoods/breathing tubes can be effectively decontaminated using the automated reprocessing protocol used in this study up to 100 cycles, but visibility of PAPR visors may be diminished
 - The decrease in visibility appeared to be due to “soap spots” – methods to remove soap spots post-reprocessing could potentially improve visibility, mitigating this concern
Elastomeric N95–Surgical Respirator (EN95-S)
EN95–S: Design Goals

Project Aim: Develop a Reusable N95 Respirator for the Health Care Industry

• Autoclavable and washable ≥ 100 cycles
• Reprocessing using protocols that adhere to current health care practices
• NIOSH approved and FDA cleared
• Health care worker “approved”
• Out-compete N95 FFR cost on a per cycle use
• Fit large population from pediatric to adult
EN95–S: Why Develop the EN95-S?

• Pandemic Preparedness
• Project BREATHE
• Health Care Worker Compliance
• Discontent with Current N95 FFRs
• Cost
• Stockpiling Logistics
EN95–S: Program Overview

Base Period – Proof of Concept
• Proof of Concept
• Initial Design
• Regulatory Planning
• IRB/OMB Planning

Option 1 – Prototype Production and Evaluation
• Laboratory Test and Evaluation
• Health Care Worker Outreach

Option 2 – Manufacturing Demonstration and Regulatory Filings

Option 3 – Pediatric EN95–S Concept Development
Summary

• HMERs and PAPRs can be effective tools for pandemic preparedness, but are:
 • Limited in their utility and application
 • Not designed for the health care setting
 • Not FDA cleared

• Better respirators are needed that are designed for the health care industry

• We need to push past self-imposed boundaries and develop technology that will solve the FFR shortage problem
Acknowledgements

Bioaerosol and Applied Microbiology Group
Del Harnish

Cognitive Solutions Group
Chris Nemeth
Questions

Mr. Brian Heimbuch, MS
Division Manager
Engineering Science Division
430 W. 5th Street Suite 700
Panama City, FL 32401
850-914-3188
bheimbuch@ara.com

www.ara.com