Update: VA Cooperative Study #595
Pulmonary Health and Deployment to Southwest Asia and Afghanistan

Chairs: Drs. Eric Garshick, Paul D. Blanc, and Susan P. Proctor
CSP Coordinating Center Director: Dr. Nicholas L. Smith
Study Objectives

Characterize the impact of deployment-related respirable particulate pollution exposures during OEF, OIF, OND, and continuing operations on current pulmonary health using high-quality, objectively ascertained epidemiologic measures

• Primary objective
 – Assess the association of cumulative exposure to fine particulate matter (particles ≤ 2.5 μm, PM$_{2.5}$) during deployments in Central Asia (Afghanistan and Kyrgyzstan), Southwest Asia (Iraq, Kuwait, Qatar, and United Arab Emirates) and Africa (Djibouti) with current measures of pulmonary function assessed by spirometry (FEV$_1$)

• Secondary objectives
 – Healthcare-provider diagnosed asthma as an outcome
 – Deployment duration as an exposure
Approach

1. Recruit 5,000 Veterans (at 6 VAMC) with land-based deployments to Afghanistan, Iraq, Kuwait, Djibouti, Qatar, Kyrgyzstan, or the UAE from 10/1/2001 - current
 - Obtain deployment history (link to PM$_{2.5}$); other covariates of exposure (self-reported); assess morbidity (symptoms and asthma); conduct spirometry pre/post BD

2. Create spatial-temporal exposure grid of estimated environmental PM$_{2.5}$ levels during deployment

3. Link exposure grid with an individual’s location and duration (spatial-temporal) and sum PM$_{2.5}$ exposures

4. Conduct association analyses to test hypotheses of cumulative deployment-related PM$_{2.5}$ exposure and pulmonary function, and assess secondary outcomes

Recruitment

• Use DMDC database, update contact information

• Invitation letter/information form to participate in a 3-hour, in-person assessment, $250 incentive

• Three rounds of mailings, 7 phone messages over 17 weeks

• Study visit scheduled after screening
 – No surgery (chest/abdominal/head/neck/brain/eye/ear), MI, pneumothorax in past 3 months
 – No respiratory illness in past 6 weeks

• 8/30/2019: 28% response; 36% if scheduled visits included;

• 26% (1,334) of cohort recruited
Data Collection Modules

Interviewer Administered

- Military history overview
- OEF/OIF/OND dates and locations
 - Each deployment, 10/2001 and later in 7 key countries
- Non-OEF/OIF/OND dates and locations
 - Other active duty military and civilian time after 10/2001
- OEF/OIF/OND exposures
- Non-OEF/OIF/OND military exposures
- Civilian occupational exposures
- Health, smoking, and demographics
- Medication inventory

Self-Completed

- PCL5 (PTSD), GAD-7 (anxiety), PHQ-8 (depression), Combat exposure, PHQ-15 (somatic symptoms), VR-12 (global health)
Assessment of Deployment Location

• Structured interview ascertains deployment histories in chronological order, specific to each base/city location(s)

 – Google Earth map and paper list of 1,274 bases in Afghanistan, Iraq, Kuwait, Djibouti, Qatar, Kyrgyzstan, and the UAE

 – For each deployment, Veteran queried sequentially about:
 • Date he/she arrived in theater (week of month)
 • Where he/she was first located (either a military base or city)
 • Date of next location, one week or more

 – For each deployment, questions repeated to fully characterize deployments including movement among bases

• A geospatial-temporal matrix is created for each participant to reflect time and locations across all deployments
Modelling Approach for Satellite-Derived PM$_{2.5}$ from NASA MAIAC

- AOD, visibility (US Air Force), and surface PM$_{2.5}$ to generate 1x1 km PM$_{2.5}$ modelled over the entire study period.
- PM$_{2.5}$ sites in Kuwait – US Embassy, HSPH sites
Pilot: Use of visibility measurements to predict PM$_{2.5}$ exposures in Southwest Asia and Afghanistan
Masri et al. JAWMA. 2017; 67: 86-96

- Matched daily PM$_{2.5}$ and average daily visibility at 3 sites in Kuwait 2004-2005
 - 648 daily PM$_{2.5}$ values
 - Visibility data included Kuwait International and Camp Udairi
- PM$_{2.5} = \alpha + \beta_1 (1/visibility) + \beta_2 (relative humidity)^2$
- 10-fold cross-validation analysis where 90% of data used to predict remaining 10%
- 3-month (seasonal) PM$_{2.5}$ observed and predicted comparison
 - $R^2=0.84$ and mean relative error of -4.5%
Monthly PM$_{2.5}$ predictions for 104 sites based on visibility in Southwest Asia and Afghanistan 2000-2012
Association Analyses

• Participant geospatial-temporal matrices are linked with weekly PM$_{2.5}$ geospatial-temporal matrices

• Participant specific time/location based PM$_{2.5}$ is calculated (μg/m3 – weeks at each location)

• Information is summed to produce cumulative PM$_{2.5}$ exposure over all deployments

• Regression analyses used to estimate the association between cumulative PM$_{2.5}$ with current FEV$_1$ and secondary outcomes
Burn Pit-Related Exposures

- **Questionnaire to identify more highly exposed persons**
 - Work at burn pit
 - Smoke coming into living area or work area
 - Exercise near burn pit

- **Location-specific burn pit related PM$_{2.5}$**
 - Identify locations of and assess duration of burn pit exposures
 - Examine MODIS fire and VIIRS active fire in proximity to base locations

- **Self-report and satellite sensing-derived data will be used as alternative exposure measures**
320 non-smokers/< 10 pack-years, in SHADE, with and without respiratory symptoms for additional assessment

- Inspiratory and expiratory CT scans
 - %-emphysema, gas trapping, small airway disease
- Inflammatory and COPD-related biomarkers
- T cell immune response
- Lung volumes, diffusion
- Impulse oscillometry and lung clearance index.
- IgE, CBC with differential

Assess associations with symptoms and deployment PM$_{2.5}$

Determine characteristics that cluster together and with cumulative exposure