MDR TB Transmission and Reactivation / Reinfection Phenomenon

S Siva Kumar
Dr Sujatha Narayanan

Tuberculosis Research Centre
(Indian Council of Medical Research),
Chetpet, Chennai, India
MOLECULAR EPIDEMIOLOGY

• Tuberculosis (TB) is a major cause of mortality worldwide. India accounts for one fifth of the global incidence.

• To curtain this, molecular epidemiological studies are extremely important
 – Molecular biology
 – Clinical medicine
 – Statistics
 – Epidemiology
APPLICATION

– To analyse the transmission dynamics.

– To distinguish Recurrent TB (Exo and Endo).

– Detection of laboratory cross-contamination.

– Identification of hypervirulent strains in populations.

– Investigations of the evolution of *M. tuberculosis*.

– Evaluation of TB control programs.

– Monitoring of transmission of drug-resistant strains.
METHODS

- IS6110 RFLP
- Spoligotyping
- MIRU-VNTR
- PGRS
- Genomic deletion analysis
- Strain-specific markers for rapid diagnosis
- SNP
IS6110-RFLP

1335 bp repeat.

Genomic DNA

PvuII digestion and Agarose gel separation

Southern Blotting

Detection
SPOLIGOTYPING

Unique Spacer

Direct Variant Repeat DVR

DR : 36bp

Spacer: 35-41bp
MIRU-VNTR

- The *M. tb* genome contains 41 loci with direct tandem repeats of 50-70 bp
- The number of repeats per locus varies between strains
- **Variable Number of Tandem Repeats (VNTR)**
- **Mycobacterial Interspersed Repetitive Units (MIRU)**
Agarose Gel Method

Sequencer (Gene Scan)
Drug resistance among different genotypes of *Mycobacterium tuberculosis* isolated from patients from Tiruvallur, South India

Sivakumar Shanmugama, N. Selvakumarb, Sujatha Narayanana,*

aDepartment of Immunology, Tuberculosis Research Centre (Indian Council of Medical Research), Mayor V. R. Ramanathan Road, Chetpet, Chennai 600031, Tamilnadu, India

bDepartment of Bacteriology, Tuberculosis Research Centre (Indian Council of Medical Research), Mayor V. R. Ramanathan Road, Chetpet, Chennai 600031, Tamilnadu, India

- Distribution of different genotypes of *M.tuberculosis*
- Association with drug resistance
IS6110 COPY NUMBER

% Single copy at 1.5kb = 39.8
% Single copy = 3.2
% 2 to 5 = 22.8
% 6 to 9 = 13.0
% >10 = 19.4
% No Copy = 1.8

IS6110
MDR Distribution Among Spoligotypes

Beijing: 12.8%
CAS: 11.4%
EAI 3: 3.6%
EAI 5: 2.9%
Other EAI: 3.6%
Harleem: 8.7%
T: 8.5%
Others: 3.8%
Spoligotypes and Treatment Regimen

Percentage

Cat I
Cat II
Cat III

CAS Beijing EAI 3 EAI 5 Other EAI H LAM S T U X Orphan
MDR and Treatment Regimen

<table>
<thead>
<tr>
<th>Category</th>
<th>MDR</th>
<th>Any Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat I</td>
<td>1.2</td>
<td>15.2</td>
</tr>
<tr>
<td>Cat II</td>
<td>12.0</td>
<td>39.8</td>
</tr>
<tr>
<td>Cat III</td>
<td>2.2</td>
<td>13.0</td>
</tr>
</tbody>
</table>
Type of tuberculosis recurrence among HIV–infected and HIV-uninfected patients.

44 HIV infected and 30 HIV-uninfected patients reoccurred.

Paired M.tb isolates from 25 HIV infected and 23 HIV-uninfected patients.

IS6110, Spoligotyping, and MIRU VNTR.
• **HIV-infected**
 - Exogenous reinfection 88 %
 - Endogenous reactivation 12 %
 - Primary resistance : 10 / 25

• **HIV-Uninfected**
 - Exogenous reinfection 9%
 - Endogenous reactivation 91%
 - Primary resistance : 5/23
 - Secondary resistance : 2/23
CONCLUSION

• Single and low copy IS6110 accounted for 66% M.tb.

• The majority of our strains belonged to the (84%) EAI

• MDR is more common in CAS, T and Beijing.

• MDR Is more common among Cat II patients.

• Recurrences after successful treatment of tuberculosis
 – Exogenous reinfection in HIV-infected persons
 – Endogenous reactivation in HIV-uninfected persons