Endpoints – Differences when Considering Deficiency vs. Chronic Disease

Amanda MacFarlane, PhD
Nutrition Research Division, Health Canada, Ottawa, ON
Dietary Reference Intakes Framework

• DRI values based on:
 – Relationships between nutrient intakes and indicators of:
 • Adequacy
 • Adverse effects
 – Data from *apparently healthy populations*
 – Chronic disease (CD) risk reduction *where sufficient data for efficacy and safety exist*
Risk assessment approach to setting DRI values

Demonstration of causality
Hazard Identification = Causal Relationship
 Lit review & interpretation
 Identification & selection of indicator (endpoint)

Intake-Response Relationship
Hazard Characterization = Dose Response
 Establish model

Intake Assessment

Implications & Special Concerns

Dietary Reference Intake
Assumptions of the DRI approach

- “Essentiality” of the substance
- Evidence of causality and intake response
- Threshold for adequacy and adverse effects
- Relevant population
- Biomarkers on causal pathway
- Evidence dictates the absolute nature of the risk

1997-2005 – Generally, DRI values only set for adequacy and adverse effects of high intakes

Assumptions don’t always apply to nutrient-CD relationships
 - Only Adequate Intake values set based on CD endpoints
Comparing the evidence of causality for deficiency and chronic disease endpoints
Assumption: Causal relationship between nutrient intake and endpoint

- Establishing causality and/or dose response
 - RCT
 - Intervention trials
 - Metabolic/balance studies
 - Depletion/repletion
 - ≥3 doses (Intake-Response)
Nature of the evidence differs for CD

- Nutrient-CD evidence mostly associational
- Establishment of causality and/or dose response in absence of RCTs
- Inherent errors/bias associated with study type
 - Confounding and selection bias
 - Self-reported intake
Assumption: Biomarkers on causal pathway

- Direct observation of endpoint
 - Disease of deficiency (EAR), adverse effect (UL)
- Indicators of status on the causal pathway for diseases of deficiency
 - Eg. Serum folate, serum 25(OH)D, serum ferritin
- Higher level of certainty of relationship
CD risk: Use of surrogate or intermediate outcomes

- Nutrient-CD associations often determined using surrogate or intermediate outcomes
 - Higher uncertainty
- Validated biomarkers (including for intake) are few

Comparing the data available for estimating Intake-Response relationships
Assumption: Absolute risk affects all persons, all life-stage groups

Depending on intake level, there is 0 or 100% risk of deficiency or adverse effects
All persons, all life-stage groups: Eg. Vitamin D and bone health
CD risk: Not all persons or life-stage groups

- And often <<50% of population affected by the CD

Source: Diabetes in Canada 2011, Figure 1-4
(data from chronic disease surveillance system)

http://www.med.uottawa.ca/sim/data/Diabetes_e.htm
CD risk: Often defined as Relative risk

- No one is at 0 or 100% risk—they are at higher or lower risk compared to baseline risk
- Changes in relative risk can be small (eg. <10%)

Relative risk: Fibre and coronary heart disease

Greatest effect often at tail(s) of intake distribution – highest or lowest intakes have largest effect

BMJ 2013;347:f6879
Assumption: Threshold for adequacy

- **Threshold effect/Inflection point** between inadequate and adequate intakes
CD risk: Absence of a threshold

Nutrient-CD relationships can lack an inflection point
Eg. Fibre and coronary heart disease

Fibre AI based on median intake to achieve *lowest relative* CHD risk

BMJ 2013;347:f6879
Assumption: Threshold for upper intake

Intake > UL increases the risk of adverse effects
CD risk: Absence of an upper threshold

- Nutrient-CD relationships can lack an inflection point
 - Eg. Saturated fats and LDL cholesterol

- * also no “benefit”: Keep intakes as low as possible while consuming a nutritionally adequate diet

Assumption: Interval between beneficial and harmful intakes
Sodium and blood pressure - no threshold and benefit overlaps harm

- Relationship is linear at all doses – NO UPPER THRESHOLD
 - AI (1.5 g) based on adequacy for other nutrients and sweat losses
 - UL (2.3 g) based on the next higher dose in trials

Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate
http://www.nap.edu/catalog/10925.html
CD risk: Potential for overlap between benefit and harm

- A nutrient can be related to multiple chronic diseases with different/overlapping risk relationships

In summary...

- The DRI approach works well for estimating adequate intakes/adverse effects for essential nutrients

- It has not worked well for CD endpoints
 - CDs are complex and can be influenced by many factors including other *food substances*
 - Assumptions used to define EAR/UL do not always apply
 - Available evidence differs significantly from that available for establishing essentiality/toxicity
Acknowledgements

- Canadian Interdepartmental/Interagency DRI Steering Committee
- US DRI Subcommittee

Canadian-US Joint DRI WG
- Steve Brooks (HC)
- Molly Cogswell (CDC)
- Janet de Jesus (NIH)
- Patricia D'Ongia (HC)
- Krista Esslinger (HC)
- Linda Greene-Finestone (HC)
- Deborah Hayward (HC)
- David Klurfeld (USDA)
- Susan Krebs-Smith (NIH)
- Chris Lynch (NIH)
- Amanda MacFarlane (HC)
- Kathryn McMurry (NIH)
- Linda Meyers (NIH)
- Kristy Mugavero (CDC)
- Jessica Mullen (CDC)
- Rick Olson (HHS)
- Karen Regan (NIH)
- Jenna Seymour (CDC)
- Pam Starke-Reed
- Christine Taylor (NIH)
- Essie Yamini (FDA)
- Beth Yetley (NIH)

DRI-Chronic Disease Workshop Co-Directors
- Beth Yetley (NIH)
- Amanda MacFarlane (HC)
- Linda Greene-Finestone (HC)

DRI-Chronic Disease Workshop Panel
- Cutberto Garza (Chair)
- Jamy Ard
- Stephanie Atkinson
- Dennis Bier
- Alicia Carriquiry
- Janet King
- Daniel Krewski
- George Wells
- William Harlan
- Dale Hattis
- Deborah O'Connor
- Ross L. Prentice
- Joseph V. Rodricks