Combination Immunotherapy Development

Immunotherapy Regimens

Daniel S. Chen MD PhD

VP, Global Head for Cancer Immunotherapy Development

Product Development, Genentech/Roche

Kathie Winson

Global Regulatory Franchise Head, Lung

Product Development Regulatory, Genentech/Roche

July 16th, 2018
Combination Development Differs from Traditional Single-Agent Development

Challenges

Clinical Development

Regulatory
Established guidelines available in US & EU regarding NME combinations; translation to other novel combinations unclear

Clinical Trial designs
Defining optimal dose & schedule is critical for both safety and efficacy
Novel approaches and designs may be explored (e.g. adaptive design)

Biomarker Development
Increased complexity with multiple biomarkers

Operational Execution

Collaboration in reporting
Safety reporting, IB, and many other aspects need to be agreed on with multiple novel molecules

Sponsor Decision-Making
Complexity for combining molecules internally and externally (with partner involved)

Execution
Efficient execution of multiple combination studies in parallel with the right data collection to support decision-making
What are the unique regulatory challenges for PD-1/PD-L1 combination therapies?

How can the impact of a second drug be assessed when combined with an existing effective drug; is there a threshold that the combination needs to meet?

How do the information needs and decision-making differ from strategies for developing novel/novel combinations?
What are the unique regulatory challenges for PD-1/PD-L1 combination therapies?

Broadly Active

Complex Biology

Massive amount of orthogonal in pathway data
A complex set of tumor, host and environmental factors govern strength and timing of anti-cancer immune responses

Immune Set Point: $\int (F_{\text{stim}}) - \int (F_{\text{inhib}}) \geq 1/\Sigma_{n=1,y} (\text{TCR affinity} \times \text{frequency})$

Chen and Mellman. *Immunity* 2013

Chen and Mellman. *Nature* 2017
Combination Therapy Approaches

- Combination with **SoC**
 - Chemotherapy in 1L NSCLC
 - Chemotherapy + bevacizumab in 1L NSCLC
- Combination with an **established in-class therapeutic**
 - bevacizumab in 1L RCC
 - bevacizumab in 1L HCC
- Combination with **established agent but in an indication where it is not established (investigational)**
 - bevacizumab in melanoma
- Combination with **new molecular entity** (new indication)
 - aCEA-CD3 bispecific in CRC
Considerations for combinations with PDL1/PD1

• PDL1/PD1 inhibitors are broadly active
• Efficacy can be measured as
 • ORR only
 • ORR, PFS, OS
 • ORR, OS only
 • PFS, OS only
 • PFS only
 • OS only
• Indication (1L vs 2L vs adjuvant)
• Subsets (eg PDL1+, TMB high, MSI high)
• Strength of SoC (eg R-CHOP in 1L DLBCL)
• Complex regimen (3 or more biologic regimen)
Clinical Study Design Options for Combination Therapies

- Add to SoC
 - Chemotherapy+bevacizumab±atezolizumab in 1L NSCLC

- Add to SoC and test contribution of parts
 - Chemotherapy±bevacizumab±atezolizumab in 1L NSCLC
 - Sunitinib vs atezolizumab±bevacizumab in 1L RCC

- Replace SoC with regimen
 - Sunitinib vs Nivolumab+ipilimumab

Add to SoC and contribution of parts in P3

Patient #, Time, Cost

representative graph
Case Study: IMPower150

Atezolizumab + bevacizumab + carboplatin + paclitaxel

Addition of atezo to a SoC

Chemo+2 biologics

First 1L NSCLC combo cancer immunotherapy

P3 readout
Combination of immunotherapy with chemotherapy

Hypothetical curve

- **Optimal window for initiating immunotherapy combination**
- **Return to the “equilibrium” inflammatory state**

Individual’s cancer-immune set point

- **Anti-PDL1/PD1:**
 - Maintenance of inflamed state?

CD8 staining images are illustrative

Chen and Mellman Nature 2017
VEGF inhibition As Immunotherapy

Hegde PS, Wallin J, Mancao C, Sem Oncol 2018

Gabrilovich et al., Nat Med 1996; Butcher et al., Cell 1991

Springer et al., Cell 1994; Motz et al., Nat Med 2014

IMpower150 is an ongoing phase III study of atezolizumab plus chemotherapy and bevacizumab.

Adding chemotherapy with or without anti-VEGF therapy to PD-L1 inhibition may further enhance the immune response.

- Stage IV non-squamous NSCLC
- Chemotherapy naïve
- PD-L1 unselected
- 1202 patients

Co-primary endpoints: PFS & OS

Maintenance: Atezolizumab, Atezolizumab + bevacizumab, Carboplatin + paclitaxel + bevacizumab

R: 1:1:1
This presentation focuses on the interim OS data for IMpower150 in all study arms in the primary study population and in key patient subgroups.
Updated PFS ITT-WT

PFS HR 0.59

(95% CI: 0.50, 0.70)

P < 0.0001

Median, 8.3 mo

(95% CI: 7.7, 9.8)

Median, 6.8 mo

(95% CI: 6.0, 7.1)

Updated OS ITT

OS HR 0.76

(95% CI: 0.63, 0.93)

Median, 19.8 mo

(95% CI: 17.4, 24.2)

Median, 14.9 mo

(95% CI: 13.4, 17.1)

Median follow-up: ~20 mo

Socinski et. al. ASCO 2018

Socinski et. al. NEJM 2018
A trend toward OS benefit was observed with atezolizumab + chemotherapy vs bevacizumab + chemotherapy, but the efficacy boundary has not yet been crossed and will be tested again at the time of the final analysis.

Median follow-up: ~20 mo
IMpower150: INV-assessed ORR in ITT-WT

Unconfirmed ORR in ITT-WT

<table>
<thead>
<tr>
<th></th>
<th>Confirmed responses</th>
<th>Bev+CP (C)</th>
<th>Atezo+Bev+CP (B)</th>
<th>Atezo+CP (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITT-WT</td>
<td>n=134</td>
<td>n=197</td>
<td>n=146</td>
<td></td>
</tr>
<tr>
<td>ORR (%)</td>
<td>40.4</td>
<td>55.3</td>
<td>41.9</td>
<td></td>
</tr>
<tr>
<td>CR rate (%)</td>
<td>0.6</td>
<td>2.5</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>SD rate (%)</td>
<td>40.1</td>
<td>28.9</td>
<td>36.2</td>
<td></td>
</tr>
<tr>
<td>Median DOR (95% CI), mo</td>
<td>6.4 (5.7, 7)</td>
<td>11.5 (8.9, 16.2)</td>
<td>9.2 (7.4, 13.9)</td>
<td></td>
</tr>
<tr>
<td>No. of ongoing responses, n (%)</td>
<td>18 (13.4%)</td>
<td>77 (39.1%)</td>
<td>53 (36.3%)</td>
<td></td>
</tr>
</tbody>
</table>

CCOD: 22 January 2018
Addition of Bevacizumab to Atezolizumab and Chemotherapy Prolongs Survival of EGFR/ALK+ Patients

Arm B vs Arm C
- Atezo+Bev+CP (Blue line)
- Bev+CP (Red line)

HRc, 0.54
(95% CI: 0.29, 1.03)

No. at Risk
- Atezo+Bev+CP: 41, 39, 37, 35, 32, 30, 28, 27, 26, 25, 24, 22, 20, 18, 16, 15, 14, 13, 10, 5, 4, 2
- Bev+CP: 63, 61, 57, 49, 46, 39, 37, 36, 34, 32, 31, 29, 27, 26, 24, 22, 20, 18, 17, 12, 7, 2

Arm A vs Arm C
- Atezo+CP (Black line)
- Bev+CP (Red line)

HRc, 0.82
(95% CI: 0.49, 1.37)

No. at Risk
- Atezo+CP: 53, 51, 50, 48, 46, 44, 41, 39, 37, 35, 33, 31, 29, 27, 26, 24, 22, 20, 18, 16, 13, 8, 6, 4
- Bev+CP: 63, 61, 57, 49, 46, 39, 37, 36, 34, 32, 31, 29, 27, 26, 24, 22, 20, 18, 17, 12, 7, 2

Socinski et. al. ASCO 2018
Socinski et. al. NEJM 2018
Addition of Bevacizumab to Atezolizumab and Chemotherapy Prolongs Survival of Patients With Liver Metastases in the ITT-WT

Arm B vs Arm C
- **HR**, 0.54
- (95% CI: 0.33, 0.88)
- Atezo+Bev+CP vs Bev+CP
- Overall Survival (%)
- Time (months):
 - 9.1 mo
 - 13.2 mo
- No. at Risk:
 - Atezo+Bev+CP: 47 41 39 36 32 31 26 20 18 13 10 5 3 1
 - Bev+CP: 47 42 34 29 27 20 17 13 8 6 4 1 1 1

Arm A vs Arm C
- **HR**, 0.85
- (95% CI: 0.53, 1.36)
- Atezo+CP vs Bev+CP
- Overall Survival (%)
- Time (months):
 - 7.0 mo
 - 9.1 mo
- No. at Risk:
 - Atezo+CP: 42 38 35 28 19 18 15 12 9 7 5 4 1 1
 - Bev+CP: 47 42 34 29 27 20 17 13 8 6 4 1 1 1

Socinski et. al. ASCO 2018
Socinski et. al. NEJM 2018
Historical data for the benefit of bevacizumab in key clinical subgroups

JO25567: PFS benefit with bevacizumab + erlotinib vs erlotinib alone in patients with \textit{EGFR Mut+ NSCLC}^1

E4599: OS benefit with bevacizumab + carbo + pac vs carbo + pac in patients with liver metastases^2

\begin{table}
\begin{tabular}{|c|c|}
\hline
Site & HR (95\% CI) \\
\hline
Pleura & 0.86 (0.63–1.18) \\
Liver & 0.68 (0.49–0.96) \\
Bone & 0.81 (0.62–1.07) \\
Adrenal & 0.97 (0.65–1.46) \\
Overall survival & 0.79 (0.67–0.92) \\
\hline
\end{tabular}
\end{table}

VEGF suppresses anti-cancer immunity

Chen and Hurwitz, 2018 publication pending
The safety profiles of ABCP and ACP were similar to A, B and C+P individually; no new safety signals were identified with the combinations.

Incidence, n (%)

<table>
<thead>
<tr>
<th></th>
<th>Arm A: atezo + CP (n = 400)</th>
<th>Arm B: atezo + bev + CP (n = 393)</th>
<th>Arm C (control): bev + CP (n = 394)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median doses received (range), n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atezolizumab</td>
<td>10 (1-43)</td>
<td>12 (1-44)</td>
<td>NA</td>
</tr>
<tr>
<td>Bevacizumab</td>
<td>NA</td>
<td>10 (1-44)</td>
<td>8 (1-38)</td>
</tr>
<tr>
<td>Treatment-related AEa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3-4</td>
<td>377 (94%)</td>
<td>370 (94%)</td>
<td>377 (96%)</td>
</tr>
<tr>
<td>Grade 5b</td>
<td>172 (43%)</td>
<td>223 (57%)</td>
<td>191 (49%)</td>
</tr>
<tr>
<td>Serious AE</td>
<td>157 (39%)</td>
<td>174 (44%)</td>
<td>135 (34%)</td>
</tr>
<tr>
<td>AE leading to withdrawal from any treatment</td>
<td>53 (13%)</td>
<td>133 (34%)</td>
<td>98 (25%)</td>
</tr>
</tbody>
</table>

Immune-related AEs in > 5 patients in any arm

<table>
<thead>
<tr>
<th></th>
<th>All grade</th>
<th>Grade 3-4</th>
<th>All grade</th>
<th>Grade 3-4</th>
<th>All grade</th>
<th>Grade 3-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rash</td>
<td>119 (30%)</td>
<td>14 (4%)</td>
<td>117 (30%)</td>
<td>9 (2%)</td>
<td>53 (14%)</td>
<td>2 (1%)</td>
</tr>
<tr>
<td>Hepatitisd</td>
<td>42 (11%)</td>
<td>12 (3%)</td>
<td>54 (14%)</td>
<td>20 (5%)</td>
<td>29 (7%)</td>
<td>3 (1%)</td>
</tr>
<tr>
<td>Laboratory abnormalities</td>
<td>36 (9%)</td>
<td>10 (3%)</td>
<td>48 (12%)</td>
<td>18 (5%)</td>
<td>29 (7%)</td>
<td>3 (1%)</td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>34 (9%)</td>
<td>1 (<1%)</td>
<td>56 (14%)</td>
<td>1 (<1%)</td>
<td>18 (5%)</td>
<td>0</td>
</tr>
<tr>
<td>Pneumonitisd</td>
<td>23 (6%)</td>
<td>8 (2%)</td>
<td>13 (3%)</td>
<td>6 (2%)</td>
<td>5 (1%)</td>
<td>2 (1%)</td>
</tr>
<tr>
<td>Hyperthyroidism</td>
<td>11 (3%)</td>
<td>0</td>
<td>16 (4%)</td>
<td>1 (<1%)</td>
<td>5 (1%)</td>
<td>0</td>
</tr>
<tr>
<td>Colitis</td>
<td>3 (1%)</td>
<td>2 (1%)</td>
<td>11 (3%)</td>
<td>7 (2%)</td>
<td>2 (1%)</td>
<td>2 (1%)</td>
</tr>
</tbody>
</table>

a Related to any study treatment.
b Including fatal hemorrhagic AEs: Arm A: 2; Arm B: 6; Arm C: 3.
c Immune-related AEs were defined using MedDRA Preferred Terms that included both diagnosed immune conditions and signs and symptoms potentially representative of immune-related events, regardless of investigator-assessed causality.
d In Arm A, 1 patient had grade 5 acute hepatitis and 1 patient had grade 5 interstitial lung disease. Data cutoff: January 22, 2018
Challenges with CIT Combination Development in the Future

How do the information needs and decision-making differ from strategies for developing novel/novel combinations?

- combination of novel regimen in an indication
- combination including a completely novel agent
1L HCC Phase Ib of Tecentriq + Avastin: known regimen, known pathways in disease, unapproved in indication

Figure 2. Investigator-Assessed Response to Atezolizumab + Bevacizumab Therapy

- **Maximum SD Reduction from Baseline (%):**
 - PR (n = 14)
 - SD (n = 5)
 - PD (n = 4)

PO, progressive disease; PR, partial response; SD, stable disease; SLD, sum of longest diameters.

Table 4. Best Overall Response (BOR)

<table>
<thead>
<tr>
<th>BOR</th>
<th>INV-Assessed per RECIST v1.1 (n = 23)</th>
<th>IRF-Assessed per RECIST v1.1 (n = 23)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR, n (%)</td>
<td>14 (61%)</td>
<td>16 (66%)</td>
</tr>
<tr>
<td>CR</td>
<td>0</td>
<td>1 (4%)</td>
</tr>
<tr>
<td>PR</td>
<td>14 (61%)</td>
<td>14 (61%)</td>
</tr>
<tr>
<td>SD</td>
<td>5 (22%)</td>
<td>7 (30%)</td>
</tr>
<tr>
<td>PD</td>
<td>4 (17%)</td>
<td>1 (4%)</td>
</tr>
</tbody>
</table>

PD, progressive disease; PR, partial response; SD, stable disease; SLD, sum of longest diameters.

Figure 3. Investigator-Assessed Change in Tumor Burden Over Time and Response Duration per RECIST v1.1

Stein et al. ASCO 2018
CEA-CD3 T cell engager + atezolizumab in MSS mCRC: novel therapeutic and PDL1 inhibitor atezolizumab

Data reported by investigators, cutoff: March 3, 2017.

Sub-group of the column to the left (n = 25 CEA-TCB + atezolizumab patients, treated at doses 5-160 mg).

MMR status unknown for 3 patients.

Two patients were MSI-high.

One patient had the confirmatory CT scan on March 23, 2017.

Taberner et. al. ASCO 2017

<table>
<thead>
<tr>
<th>Confirmed best overall response (RECIST v1.1), n (%)</th>
<th>Study 1: CEA-TCB monotherapy</th>
<th>Study 2: CEA-TCB + atezolizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 31, 60-600 mg MSS, n = 28 (90%)<sup>b</sup></td>
<td>n = 25, 5-160 mg MSS, n = 23 (92%)<sup>c</sup></td>
<td>n = 11, 80 or 160 mg<sup>a</sup> MSS, n = 11 (100%)</td>
</tr>
<tr>
<td>Partial response</td>
<td>2 (6%)</td>
<td>3 (12%)<sup>d</sup></td>
</tr>
<tr>
<td>Stable disease</td>
<td>12 (39%)</td>
<td>10 (40%)</td>
</tr>
<tr>
<td>Disease control</td>
<td>14 (45%)</td>
<td>13 (52%)</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>16 (52%)</td>
<td>12 (48%)</td>
</tr>
<tr>
<td>Non-evaluable</td>
<td>1 (3%)</td>
<td>-</td>
</tr>
</tbody>
</table>
Rapidly prioritize and Accelerate Transformative Combination Therapies

CIT=cancer immunotherapy; IND=new investigational drug application; NME=new molecular entity; LIP=late-stage investment point; SOC=standard of care

Multi-indication Indication specific umbrella protocol with SOC control arm
Multi-basket Biomarker defined subgroups for personalized healthcare
Randomized Faster and more confident decisions; potential for accelerated approval
Longitudinal At disease progression patients can reenter other combinations
Adaptable Fast-track opt-in for external and internal late-stage NMEs

2017 launch in 4 indications including 11 molecules and 22 first-in-disease combinations

Chen DS, FDA-AACR 2017
Rapid and reliable estimation of benefit over SOC

Contemporary randomized Control Arm

*Real World Data

- Create a synthetic control arm based on RWD using similar inclusion/exclusion criteria as RCT, with patients treated by the SOC
- Outcomes from RWD cohort can complement or replace those from the CT SOC arm

Meta-Analysis

Distribution

Point estimate (abstract)
Discussion

• There are a multitude of scenarios in which CIT drugs can be developed in combination with other products (SOC, investigational drug[s], novel combinations)

• Individual contribution of each component of the combination could be leveraged from historical studies, demonstrated in Phase Ib/II, or demonstrated in a multi-arm randomized Phase III study.

• **Outstanding Questions:**
 • Can real world data be leveraged to demonstrate individual contribution of a component or SOC?
 • Given level of existing data on PD-1/PD-L1 drugs, what is the level of evidence needed to establish B/R of new CIT in NME + CIT combinations?
 • What are additional considerations when developing novel-novel CIT combinations?
Acknowledgements

Gregg Fine
Alan Sandler
Amreen Husain
Marjorie Green
Daniel Waterkamp
Marcella Fasso
Carol O’Hear
Marcus Ballinger
Roel Funke
Hila Barak
Jing Yi
Ed Cha
Aney Vasisht
Cathie Ahearn
Robin Taylor
Priti Hegde
Marcin Kowanetz
Sanjeev Maruthasan
Luciana Molinero
Meghna Das Thakur
Mahrukh Huseni
Sami Mahrus
Mahesh Yadav
Dustin Smith
Richard Bourgon
Wei Zou
Craig Cummings
Lukas Amler
Ira Mellman
Shannon Turley
Matthew Albert
Jane Grogan
Leila Delamarre
Scott Holden
Stuart Lutzker
Friedrich Graf-Finkenstein
Jose Saro
Vaios Karanikas
Fabien Giere
Pablo Umana
William Pao
Weilan Ye
Alex Ritter
Wei Lin
Wayne Chu
Herb Hurwitz
Daniel Waterkamp
Domink Ruettinger
Christian Rommel
Christian Klein
Marina Bacac
Jerry Hsu
Mark Arundine
Geri Jermy
Mark Velligan
Hartmut Koeppen
Mika Derynck
Sandra Horning

Genentech/Roche investigators

Steve Hodi
Jedd Wolchok
Gordon Freeman
Josep Tabernero
Omid Hamid
Tom Powles
Naiyer Rizvi
Ignacio Melero
George Coukos
Scott Gettinger
Matthew Hellmann
Roy Herbst
Toni Ribas

Patients and their families