Addressing Fatigue, Sleep, and Cognitive Functioning As Part of Survivorship Care

Paul Jacobsen, PhD
Healthcare Delivery Research Program
Division of Cancer Control and Population Sciences
Scope of the Problem

Cancer-related symptom burden is substantial

- 27% of off-therapy patients have ≥ 3 moderate to severe symptoms\(^1\)
- Most common symptoms: fatigue (27%) and disturbed sleep (22%)\(^1\)

Poorly controlled symptoms contribute to:

- Poor quality of life including impaired physical and social functioning\(^2\)
- Nonadherence with and discontinuation of oral therapies\(^3,4\)
- Lower rates of return to work and impaired ability to work\(^5,6\)

Presentation of Fatigue, Sleep Problems, and Cognitive Problems in People with Cancer

- Pre-existing symptom
- Disease symptom
 - Initial disease symptom
 - Symptom of advancing disease
- Treatment side effect
- Persistent symptom after treatment completion
- New symptom after treatment completion
Assessment of Post-treatment Fatigue

- Patient-reported outcome measures (e.g., BFI)1
- Case definition interview2

1Mendoza et al, Cancer 1999;85:1186-96
2Donovan et al, Psycho-Oncol 2013;22:737-44
Risk Factors for Post-treatment Fatigue

- Pre-treatment fatigue\(^1\)
- Type of cancer treatment\(^2\)
- Body mass index\(^3\)
- Polymorphisms in inflammation-related genes\(^4\)
 - IL1B
 - IL6
 - TNFA

\(^1\)Goedendorp et al, J Pain Symptom Manage 2013;45:213-22
\(^2\)Donovan et al, J Pain Symptom Manage 2004;28:373-80
\(^3\)Andrykowski et al, Cancer 2010;116:5740-48
\(^4\)Bower, Nat Rev Clin Oncol 2014;11:597-609
Mechanisms for Post-treatment Fatigue

- Persisting inflammation (IL-1RA, CRP)
- Cognitive and behavioral responses

Precipitating Factors
- Direct physiologic effects of treatment
- Other acute side effects

Symptoms
- Subjective experience of fatigue
- Disability

Sustaining Factors
- Cognitive responses (catastrophizing)
- Behavioral responses (physical inactivity)

Intervention Effects - Fatigue

- Meta-analysis of 113 RCTs\(^1\)
- 11,525 patients (78% female)
- 45 studies of patients who completed treatment

<table>
<thead>
<tr>
<th>Variable(^a)</th>
<th>Overall WES (95% CI)</th>
<th>P Value</th>
<th>No. of Effect Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>After primary: exercise</td>
<td>0.26 (0.18 to 0.34)</td>
<td><.001</td>
<td>29</td>
</tr>
<tr>
<td>After primary: psychological</td>
<td>0.42 (0.29 to 0.55)</td>
<td><.001</td>
<td>13</td>
</tr>
<tr>
<td>After primary: exercise and psychological</td>
<td>0.32 (0.17 to 0.47)</td>
<td><.001</td>
<td>7</td>
</tr>
<tr>
<td>After primary: pharmaceutical</td>
<td>0.08 (-0.17 to 0.32)</td>
<td>.55</td>
<td>4</td>
</tr>
</tbody>
</table>

\(^1\)Mustian et al, JAMA Oncol, 2017;3:961-8
Interventions for Post-treatment Fatigue: ASCO\(^1\) and Pan-Canadian Guidelines\(^2\)

Recommended
- Exercise
- Cognitive-behavioral therapy
- Psychoeducation

Limited Evidence
- Mindfulness-based approaches
- Yoga
- Acupuncture

No Evidence
- Psychostimulant medications

\(^1\)Bower et al, J Clin Oncol 2014;32:1840-50
\(^2\)www.capo.ca/pdf/CRF_Guideline.pdf
Future Directions: Fatigue

Risk Factors and Mechanisms

• Expand findings on genetic risk factors
• Clarify underlying biological mechanisms

Treatment

• Identify recommended intensity of exercise
• Adapt effective interventions for more widespread dissemination and implementation
• Explore new intervention strategies
Assessment of Post-treatment Sleep Problems

- Patient-reported outcome measures (e.g., PSQI)1
- Polysomnography
- Actigraphy

Risk Factors for Post-treatment Sleep Problems

- Pre-treatment sleep problems\(^1\)
- Type of cancer treatment\(^1\)
- Arousability\(^2\)

Mechanism for Post-treatment Sleep Problems

- Cognitive and behavioral responses

 Precipitating Factors
 - Direct physiologic effects of treatment
 - Other acute side effects

 Symptoms
 - Subjective experience of sleep difficulty
 - Impaired sleep architecture

 Sustaining Factors
 - Cognitive responses (dysfunctional beliefs about sleep)
 - Behavioral responses (maladaptive sleep behaviors)

1Savard et al, J Clin Oncol 2009:27:5233-5239
Intervention Effects - Sleep Problems

- Meta-analysis of 8 RCTs of cognitive-behavioral therapy for insomnia (CBT-I)\(^1\)
- 752 patients (5 studies of breast cancer patients)

\(^1\)Johnson et al, Sleep Med Rev 2016;27:20-8
Interventions for Post-treatment Insomnia: NCCN¹ and Pan-Canadian Guidelines²

Recommended

- Sleep hygiene measures
- Cognitive-behavioral therapy
- Hypnotic medications (short-term/intermittent)
- Psychoeducation

Suggested

- Exercise

²Howell et al, Support Care Cancer 2013;21:2695-706
Future Directions: Sleep Problems

Assessment

• Investigate apnea and other sleep disorders

Risk Factors and Mechanisms

• Identify agents interfering with sleep

• Clarify underlying biological mechanisms

Treatment

• Adapt effective interventions for more widespread dissemination and implementation

• Consider implications of symptom cluster concept
Post-treatment Cognitive Problems

Chemotherapy Fog Is No Longer Ignored as Illusion

Debbie Kamplain of Peoria, Ill., hired a personal organizer to help her prepare to move her family to Indiana.

By JANE GROSS
Published: April 29, 2007
Assessment of Post-treatment Cognitive Problems

- Patient-reported outcome measures (e.g., FACT-Cog\(^1\))
- Neuropsychological tests – Core measures\(^2\)

<table>
<thead>
<tr>
<th>Domains</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning and memory</td>
<td>Hopkins Verbal Learning Test-Revised</td>
</tr>
<tr>
<td>Processing speed</td>
<td>Trail Making Test, Controlled Oral Word Association</td>
</tr>
<tr>
<td>Executive function</td>
<td>Trail Making Test, Controlled Oral Word Association</td>
</tr>
</tbody>
</table>

- Functional imaging studies (fMRI, fPET)\(^3\)
- Quantitative electroencephalography (qEEG)\(^4\)

\(^1\)Wagner et al, J Support Oncol 2009;7:W32-39
\(^2\)Wefel et al, Lancet Oncol 2011;12:703-8
\(^3\)Wefel et al, CA Cancer J Clin 2015;65:123-38
\(^4\)Hunter et al, Psycho-Oncol 2014:23:713-5
Risk Factors for Post-treatment Cognitive Problems

- Age1
- Cognitive reserve1
- Genetic polymorphisms
 - APOE2
 - COMT3

1Ahles et al, J Clin Oncol 2010; 28:4434-40
2Ahles et al, Psycho-Oncol 2003;12;612-19
3Small et al, Cancer 2011;117:1369-76
Mechanisms for Post-treatment Cognitive Problems

Direct neurotoxic effects1,2,3

- Volume loss
- Reduced white matter integrity
- Altered neurochemistry and metabolism

Cytokine deregulation1,2,3

Hormonal changes1

1Janelsins et al, Intl Rev Psychiatry 2014;26:102-13
2Joly et al, J Pain Symptom Manage 2015;50:843-41
3Bray et al, Cancer Forum 2017;41:1
Interventions for Post-treatment Cognitive Problems

- Cognitive training\(^1\)
- Memory and attention adaptation training\(^1\)
- Cognitive rehabilitation\(^1\)
- EEG neurofeedback\(^1\)
- Exercise, yoga, Tai Chi, Qigong\(^2,3\)
- Psychostimulant medications\(^3\)
- Acetylcholinesterase inhibitors\(^3\)

Future Directions: Cognitive Problems

Assessment
- Integrate different assessment approaches

Risk Factors and Mechanisms
- Expand findings on genetic risk factors
- Clarify structural and functional brain changes

Treatment
- Conduct full-scale trials of promising interventions
- Explore possibility of preventing cognitive changes

Develop Evidence-based Treatment Guidelines
Moving Guideline Recommendations into Practice

Screening

Assessment
Focused history
In-depth evaluation of presenting symptoms
Identification of contributing factors

Management and Treatment
Education, support, and self-management strategies
Psychological and psychosocial interventions
Pharmacologic Interventions

Follow-up and on-going re-assessment
Barriers to More Effective Symptom Control

Symptoms are not systematically assessed and reported

- Patient-reported outcomes (PROs) not used in many practice settings
- Even when collected, PRO data may not facilitate symptom control

Symptoms are not adequately managed

- Limited awareness of existing clinical practice guidelines
- Difficulty accessing resources for symptom management

Lack of systematic efforts to translate research into practice

- RCTs show benefits of integrated symptom assessment and reporting
- Implementation science approach yet to be applied
Cancer Moonshot℠
Blue Ribbon Panel Recommendation

Strategic research investment, based on implementation science, to accelerate clinical adoption of integrated systems to:

- Gather and monitor patient-reported symptoms
- Provide decision support and care using evidence-based symptom management guidelines

www.cancer.gov/research/key-initiatives/moonshot-cancer-initiative/funding/upcoming#impact
Conclusions

T0 Fill gaps in understanding biological basis of common symptoms

T1 Develop new intervention strategies based on mechanistic understanding

T2 Conduct full-scale trials of promising interventions

T3 Improve routine symptom management through implementation research

T4 Promote widespread use of PROs to be able to evaluate adequacy of symptom management at population level
Triage and Stepped Care Models

No or mild symptoms
Active monitoring, education, support

Moderate symptoms
Evaluation
Low-intensity interventions (e.g., self-management)

Moderate symptoms, non-responsive
Additional evaluation
High-intensity interventions (e.g., individual therapy)
Consider combined modality treatment

Severe symptoms
Evaluation
High-intensity interventions (e.g., individual therapy)
Combined modality treatment