Role of Companion Animals in the Development of new PET Agents

Peter L. Choyke, M.D.
Amy LeBlanc, D.V.M.
National Cancer Institute
F18 FDG PET/CT
Colon cancer
Rationale for use of companion animals in PET imaging

- Accelerate development of drugs/imaging agents
- Go-No-go decisions regarding drugs/imaging
- Conduct realistic experiments without IND
- Toxicity easy to ascertain
- Size, weight, PK, PD, efficacy response
- Feasibility to obtain validation tissue (IACUC easier than IRB)
- Can be used in context of clinical trials
Companion animal “models” are more realistic than mouse models

- **Companion animal**
 - Realistic size, human scanner
 - Spontaneous tumors with stroma
 - Immune system
 - Heterogeneous
 - Realistic growth rates
 - Realistic physiology (e.g. heart rate 100bpm)

- **Mouse Model**
 - Small size, large tumor, micro PET/CT
 - Cell lines with mixed stroma
 - Immune compromised
 - Homogeneous
 - Accelerated growth rates
 - Rodent physiology (e.g. heart rate 300bpm)
Challenges of testing PET Agents

- PET agents depend on **high target to background ratio (TBR)**.
- Mouse models over-estimate target affinity (monoclonal-high expressing) and underestimate background.
 - Companion animal tumors are polyclonal+stromal
- Background is related to pharmacokinetics
 - PK of rodents is much different than higher order mammals.
 - Larger mammals provide a more realistic view of TBR.
Sedation with cage confinement vs. general anesthesia during uptake time

General anesthesia to facilitate positioning

Consideration of radioactive waste(s) during and after scan

Courtesy Amy LeBlanc DVM
Technical Considerations

- **Dual Use Equipment**
 - Human PET/CT scanners are generally not dedicated to animal research therefore companion animals need to be separated from human schedule

- **Staffing**
 - PET/CT Technologist (Radiation), Veterinary Staff, Imaging Specialists

- **Radiation Safety**
Radiation Safety

- Number one issue: **Peeing and Pooping**
- Concerns:
 - Public Relations
 - Heightened awareness vis a vis terrorist threats

Temporary Housing

- C11-20 minute half life (clear in 2 hours)
- Ga68- 70 min half life (clear in 7 hours)
- F18 – 110 min. half life (clear in 12-24 hours)
- Zr-89-3 day half life (clear in 20 days!)
P5H/P39 scanner: 2005-2006

Courtesy Amy LeBlanc DVM
PET imaging agents

- Receptor Specific imaging
 - Ga68-DOTATE: Somatostatin Receptor
 - Zr89 Panutumumab (EGFR)

- Cancer “Hallmark” Tracers
 - F18 FDG: Warburg phenomenon
 - F18 FAZA: Hypoxia
 - F18 CP18: Apoptosis
 - F18 FLT: Proliferation
“Winston” 6 yr mixed-breed dog
B cell non-Hodgkin’s lymphoma

18F FDG Baseline

18F FDG Week 9 CHOP

T: 1%
B: 0%

Images courtesy of Misty Long RT (R)(N)
Marker of cellular proliferative activity
Analog of AZT
Accumulation in cells dependent on:
- Thymidine kinase 1 (TK1) activity
- Activation of salvage pathways for nucleoside transport
18FDG = cellular glucose metabolism
18FLT = cellular proliferation

“Ike” 9 yr MC mixed breed dog
- Large hepatic mass
- US guided FNA = mixed inflammation and necrosis
- Staging = no signs of metastasis
“Ike” – 18FDG PET/CT imaging

5 mCi 18FDG
60 min uptake
5 min/bed

Courtesy Amy LeBlanc DVM
“Ike” – 18FDG PET/CT imaging

Courtesy Amy LeBlanc DVM
“Ike” – 18FLT imaging

Hepatocellular Carcinoma

Courtesy Amy LeBlanc DVM
“Ike” – 18FLT imaging

Hyperplastic node

Courtesy Amy LeBlanc DVM
Imaging of sodium/iodide symporter (NIS) protein

Traditionally accomplished with ^{123}I, ^{131}I, and ^{99m}Tc pertechnetate

^{18}F-tetrafluoroborate (^{18}F-TFB)

Courtesy Amy LeBlanc DVM
\(^{18}\text{F}-\text{TFB}, 5 \text{ mCi, 60 min uptake}\)

9 yr MC 80 lb hound dog

- Salivary gland
- Thyroid gland
- Ectopic thyroid tissue - myocardium/LV outflow tract
- Stomach

Free \(^{18}\text{F}-\text{uptake in bone, excretion via urinary system}\)

Courtesy Amy LeBlanc DVM
Schematic of Apoptosis

- Receptor Mediated (Extrinsic Pathway)
 - FAS/TRAIL
 - Fadd/mort1

- Mitochondrial - Mediated (Intrinsic Pathway)
 - Chemotherapy, UV
 - Mitochondria
 - Cytochrome-C
 - Apaf-1

- Caspase-8
- Caspase-3
- Caspase-9
- Granzyme B
- Death
- IAP's
CP-18 is an enzyme substrate of caspase 3

Figure 5-12 Digestions of CP-18 with various proteases. Results normalized for CP-18 in controls.
Design Concept for Apoptosis Imaging Agent
Click Chemistry Caspase-3 Substrate 18F-CP18

Apoptotic Cell

Chemical Structure

- **Easy to Label:** Click chemistry enabled [F-18] labeling
- **Superior PK Properties:** Triazole and galactose groups urge renal clearance
- **DEVD Sequence:** Based on well-established fluorescent apoptosis reporters
- **Localizes in Cells:** PEG facilitates transport into cells

CASPASE 3 CP18 is an investigational imaging agent. No specific products have been approved by the EMA, U.S. FDA, or other Healthcare Authorities. The clinical information contained herein is for informational purposes only and is not to be construed as an advertising, promotion or endorsement for these products.
Apoptosis Imaging Agent
Caspase-3 substrate 18F-CP18 pre-clinical evaluation

A) 18F-CP18 Mouse Scan

B) Autoradiography & Staining

C) Correlation of Caspase-3 & 18F-CP18 PET

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>PET T/M</th>
<th>C-3 T/M</th>
</tr>
</thead>
<tbody>
<tr>
<td>LnCaP</td>
<td>4.5</td>
<td>6.3</td>
</tr>
<tr>
<td>PC3</td>
<td>8.6</td>
<td>17.2</td>
</tr>
</tbody>
</table>

A) CD31, tunel, and hematoxylin of PC3 tumor

B) 18F-CP18 in vivo uptake, ex vivo autoradiography of PC3 tumor

C) Caspase-3 staining and hematoxylin

Caspase-3 activity assay: Ac-DEVD-AFC (fluorogenic substrate), tissue homogenate or Caspase-3. Measure the cleavage rate of substrate. Fluorescent units of samples were converted to Caspase-3 activity units (from standard curve) and were normalized by protein concentration.

18F-CP18 is an investigational imaging agent. No specific products have been approved by the EMA, U.S. FDA, or other Healthcare Authorities. The clinical information contained herein is for informational purposes only and is not to be construed as an advertising, promotion or endorsement for these products.
NHP studies

No safety signals
Rapid renal excretion
Low background
Granted IND
No evidence that it shows Apoptosis in man

Non human primate

Human volunteer

4 min 12 min 33 min 180 min

7 min 46 min 77 min 144 min
Positives to companion animals
- Validation with tissue confirmation
- Survival data

Open questions:
- Are animal patients recognized by FDA?
- Will metabolism differences render data useless?

Strategy:
- Start small with commonly available PET agents and proceed with more exotic tracers
Conclusions

- Companion animals offer many potential advantages in developing new PET agents
 - Larger, heterogeneous, with stroma
- Companion animals present some unique challenges for the clinical environment
 - Radiation safety, Dual use issues
- “Hallmark” Tracers are likely more relevant than receptor-transporter tracers
 - Species differences
- PET agent testing in companion animals could be very useful in accelerating tracer/drug development
Thanks to Amy LeBlanc for supplying several of the slides in this talk and for helpful discussions.